Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study examines ground-based precipitation observations recorded by a high-density gauge network located within approximately 40 km of the urban center of Louisville, Kentucky. An analysis of April–October events reveals that precipitation is significantly greater on the downwind side of Louisville than on the upwind side, particularly when precipitation systems have a westerly component to their motion. The mean difference between downwind and upwind precipitation across all events is 20%. This value is smaller for widespread precipitation events (i.e., most or all gauges detect precipitation) and is larger for isolated events (i.e., rain detected by one-half of the gauges or fewer). The largest and most significant differences between upwind and downwind precipitation amounts occur in association with moist moderate, moist tropical, and transitional air masses.more » « less
-
Abstract This study examines how organized lines of deep convective storms can be impacted by a large city with a prominent urban heat island and how low‐level environmental vertical wind shear may influence the outcomes of that interaction. Idealized simulations of squall lines are conducted in which a simplified urban area—defined by perturbations to skin temperature and surface roughness length—is placed in the center of an otherwise horizontally homogeneous domain. Simulations are conducted with three different magnitudes of low‐level vertical wind shear representing “weak,” “medium,” and “strong” shear environments. Results show that storms experience noticeable modification—including enhanced downwind precipitation—after interacting with a prominent urban heat island in all three shear configurations. However, the details of the modification are a function of the shear magnitude. In the medium and strong shear simulations, updrafts are enhanced via increased buoyancy after passing over a prominent urban heat island. In contrast, little updraft strengthening is evident in the weak‐shear simulations. Instead, near‐surface winds are enhanced downwind of the urban heat island due to a more prominent descending rear‐inflow jet.more » « less
-
Idealized simulations with a cloud-resolving model are conducted to examine the impact of a simplified city on the structure of a supercell thunderstorm. The simplified city is created by enhancing the surface roughness length and/or surface temperature relative to the surroundings. When the simplified city is both warmer and has larger surface roughness relative to its surroundings, the supercell that passes over it has a larger updraft helicity (at both midlevels and the surface) and enhanced precipitation and hail downwind of the city, all relative to the control simulation. The storm environment within the city has larger convective available potential energy which helps stimulate stronger low-level updrafts. Storm relative helicity (SRH) is actually reduced over the city, but enhanced in a narrow band on the northern edge of the city. This band of larger SRH is ingested by the primary updraft just prior to passing over the city, corresponding with enhancement to the near-surface mesocyclone. Additional simulations in which the simplified city is altered by removing either the heat island or surface roughness length gradient reveal that the presence of a heat island is most closely associated with enhancements in updraft helicity and low-level updrafts relative to the control simulation.more » « less
-
Variability in Isolated Convective Activity between Louisville, Kentucky, and Nearby Rural LocationsAbstract This study analyzes the frequency of strong, isolated convective cells in the vicinity of Louisville, Kentucky. Data from the Severe Weather Data Inventory are used to compare the frequency of convective activity over Louisville with the observed frequency at nearby rural locations from 2003 to 2019. The results show that Louisville experiences significantly more isolated convective activity than do the rural locations. The difference in convective activity between Louisville and the rural locations is strongest during summer, with peak differences occurring between May and August. Relative to the rural locations, Louisville experiences more isolated convective activity in the afternoon and early evening but less activity after midnight and into the early morning. Isolated convective events over Louisville are most likely during quiescent synoptic conditions, whereas rural events are more likely during active synoptic patterns. To determine whether these differences can be attributed primarily to urban effects, two additional cities are shown for comparison—Nashville, Tennessee, and Cincinnati, Ohio. Both Nashville and Cincinnati experience more isolated convective activity than all five of their nearby rural comparison areas, but the results for both are statistically significant at four of the five rural locations. In addition, the analysis of Cincinnati includes a sixth comparison site that overlaps the urbanized area of Columbus, Ohio. For that location, differences in convective activity are not statistically significant.more » « less
-
null (Ed.)Numerous studies have identified spatial variability in convective parameters such as rainfall totals and lightning flashes in the vicinity of large urban areas, yet many questions remain regarding the storm-scale processes that are altered during interaction with a city as well as which urban features are most responsible for storm modification. This study uses an idealized, two-dimensional cloud model to investigate structural and evolutionary changes in a squall line as it passes over a simplified representation of a large city. A parameter space exploration is done in which the parameters of the city—surface temperature and surface roughness length—are systemically increased relative to the region surrounding the idealized city. The resultant suite of simulations demonstrates that storm parameters such as vertical velocity, hydrometeor mass, upward mass flux, and buoyant accelerations are enhanced when the storm passes over the idealized city. No such enhancement occurs in the control simulation without an idealized city.more » « less
An official website of the United States government
