Abstract This study examines how organized lines of deep convective storms can be impacted by a large city with a prominent urban heat island and how low‐level environmental vertical wind shear may influence the outcomes of that interaction. Idealized simulations of squall lines are conducted in which a simplified urban area—defined by perturbations to skin temperature and surface roughness length—is placed in the center of an otherwise horizontally homogeneous domain. Simulations are conducted with three different magnitudes of low‐level vertical wind shear representing “weak,” “medium,” and “strong” shear environments. Results show that storms experience noticeable modification—including enhanced downwind precipitation—after interacting with a prominent urban heat island in all three shear configurations. However, the details of the modification are a function of the shear magnitude. In the medium and strong shear simulations, updrafts are enhanced via increased buoyancy after passing over a prominent urban heat island. In contrast, little updraft strengthening is evident in the weak‐shear simulations. Instead, near‐surface winds are enhanced downwind of the urban heat island due to a more prominent descending rear‐inflow jet.
more »
« less
Idealized Simulations of a Supercell Interacting with an Urban Area
Idealized simulations with a cloud-resolving model are conducted to examine the impact of a simplified city on the structure of a supercell thunderstorm. The simplified city is created by enhancing the surface roughness length and/or surface temperature relative to the surroundings. When the simplified city is both warmer and has larger surface roughness relative to its surroundings, the supercell that passes over it has a larger updraft helicity (at both midlevels and the surface) and enhanced precipitation and hail downwind of the city, all relative to the control simulation. The storm environment within the city has larger convective available potential energy which helps stimulate stronger low-level updrafts. Storm relative helicity (SRH) is actually reduced over the city, but enhanced in a narrow band on the northern edge of the city. This band of larger SRH is ingested by the primary updraft just prior to passing over the city, corresponding with enhancement to the near-surface mesocyclone. Additional simulations in which the simplified city is altered by removing either the heat island or surface roughness length gradient reveal that the presence of a heat island is most closely associated with enhancements in updraft helicity and low-level updrafts relative to the control simulation.
more »
« less
- Award ID(s):
- 1953791
- PAR ID:
- 10505283
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Meteorology
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2674-0494
- Page Range / eLocation ID:
- 97 to 113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Supercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity ( ω s ) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ω s , a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s –1 , vertical vorticity by up to 0.2 s –1 , and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ω s exceeded 110 m 2 s –2 and 0.015 s –1 , respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ω s correspond to greater tornado probabilities.more » « less
-
null (Ed.)Abstract The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties.more » « less
-
Abstract Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts.more » « less
-
null (Ed.)Abstract Hundreds of supercell proximity soundings obtained for field programs over the central United States are analyzed to reconcile differences in recent studies and to refine our knowledge of supercell environments. The large, storm-centric observation-based dataset and high vertical resolution of the sounding data provide an unprecedented look at supercell environments. Not surprisingly, storm-relative environmental helicity (SRH) is found to be larger in tornadic soundings than in nontornadic soundings. The primary finding that departs from previous studies is that storm-relative winds contribute substantially to the larger SRH. Stronger ground-relative winds and more rightward-deviant storm motions contribute to the larger storm-relative winds for the tornadic soundings. Spatial analyses of the soundings reveal lower near-ground pressure perturbations and stronger low- to midlevel cyclonic flow for the tornadic soundings, which suggests stronger mesocyclones, perhaps explaining the more rightward-deviant motions. Differences in the mean critical angle between the tornadic and nontornadic soundings are small and do not contribute to the larger mean SRH, but the tornadic soundings do have fewer instances of smaller (<60°) critical angles. Furthermore, the critical angle is shown to be a function of azimuth from the updraft. Other results include a low-to-the-ground (~250 m on average) hodograph kink for both the tornadic and nontornadic soundings and few notable differences in thermodynamic quantities, except for the expected lower LCLs related to higher RH for the tornadic soundings, somewhat smaller 0–3 km lapse rates in tornadic environments related to weaker/shallower capping inversions, and larger 0–3 km CAPE in near-field environments.more » « less
An official website of the United States government

