Abstract Permafrost dynamics can drastically affect vegetation and soil carbon dynamics in northern high latitudes. Vegetation has significant influences on the energy balance of soil surface by impacting the short-wave radiation, long-wave radiation and surface sensible heat flux, affecting soil thermal dynamics, in turn, inducing vegetation shift, affecting carbon cycling. During winter, snow can also significantly impact soil temperature due to its insulative effect. However, these processes have not been fully modeled to date. To quantify the interactions between vegetation, snow, and soil thermal dynamics and their impacts on carbon dynamics over the circumpolar region (45–90° N), we revise a sophisticated ecosystem model to improve simulations of soil temperature profile and their influences on vegetation, ecosystem carbon pools and fluxes. We find that, with warmer soil temperature in winter and cooler soil temperature in summer simulated with the revised model considering vegetation shift and snow effects, the region will release 1.54 Pg C/year to the atmosphere for present-day and 66.77–87.95 Pg C in 2022–2100. The canopy effects due to vegetation shift, however, will get more carbon sequestered into the ecosystem at 1.00 Pg C/year for present day and 36.09–44.32 Pg C/year in 2022–2100. This study highlights the importance to consider the interactions between snow, vegetation shift and soil thermal dynamics in simulating carbon dynamics in the region.
more »
« less
A Dynamics of Surface Temperature Forced by Solar Radiation
Abstract Due to lack of a unified description of the Earth surface temperature, a generic dynamic equation is postulated as an inference from the special case of snow. Solar radiation is explicitly included in the formulation for transparent media such as snow, ice and water while implicitly through (conductive) surface heat flux for non‐transparent media such as soil. The physical parameters of the equation are medium thermal inertia, thermal and radiative diffusivity. The equation for transparent media reduces to the familiar force‐restore model of soil surface temperature when the penetration depth of solar radiation tends to zero. Proof‐of‐concept validation for snow surface temperature as a paradigm of transparent media at three sites in the Arctic and Antarctica confirms the postulated equation as a generic description of the dynamics of surface temperature.
more »
« less
- Award ID(s):
- 2006281
- PAR ID:
- 10395670
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 3
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A fundamental challenge in energy sustainability is efficient utilization of solar energy towards energy‐neutral systems. The current solar cell technologies have been most widely employed to achieve this goal, but are limited to a single‐layer 2D surface. To harvest solar light more efficiently, a multilayer system capable of harvesting solar light in a cuboid through transparent photothermal thin films of iron oxide and a porphyrin compound is developed. Analogous to a multilayer capacitor, an array of transparent, spectral selective, photothermal thin films allows white light to penetrate them, not only collecting photon energy in a 3D space, but generating sufficient heat on each layer with significantly increased total surface area. In this fashion, thermal energy is generated via a multilayer photothermal system that functions as an efficient solar collector, energy converter and generator with high energy density. A solar‐activated thermal energy generator that can produce heat without any power supply and reach a maximum temperature of 76.1 °C is constructed. With a constant incoming white light (0.4 W cm−2), the thermal energy generated can be amplified 12‐fold via multilayers. The multilayer system extends another dimension in solar harvesting and paves a new path to energy generation for the energy‐neutral system.more » « less
-
Abstract Climate change creates a variety of novel stressors for species, such as a decline in snowpack. Loss of snow has many impacts, including the loss of thermal insulation of soils. Winter/spring freezing of soils has been tied to forest mass mortality in multiple locations around the world. Many species, however, can take alternative growth forms, such as tall tree forms and short shrub-like forms. Shrub-forms may provide a unique protection from the snow loss phenomenon by providing a similar thermal insulation as snowpack. That hypothesis is tested here using yellow-cedar, a species undergoing mass mortality due to snow loss. Temperature loggers were placed under both tree- and shrub-form cedars, including areas where the species was experimentally removed. The number of soil freezing days was high in open areas, areas of tree mortality, and where the shrub-form was removed, but was almost zero in areas where the shrub-form was left intact. This suggests that growth-form temperature moderation is possible and may provide an important resistance to the mortality mechanism. In other areas around the world where snow loss is resulting in soil freezing and mortality, growth forms should be investigated as a potential moderating mechanism for this particular climate change stress.more » « less
-
Abstract This paper develops a mathematical model and statistical methods to quantify trends in presence/absence observations of snow cover (not depths) and applies these in an analysis of Northern Hemispheric observations extracted from satellite flyovers during 1967–2021. A two-state Markov chain model with periodic dynamics is introduced to analyze changes in the data in a cell by cell fashion. Trends, converted to the number of weeks of snow cover lost/gained per century, are estimated for each study cell. Uncertainty margins for these trends are developed from the model and used to assess the significance of the trend estimates. Cells with questionable data quality are explicitly identified. Among trustworthy cells, snow presence is seen to be declining in almost twice as many cells as it is advancing. While Arctic and southern latitude snow presence is found to be rapidly receding, other locations, such as eastern Canada, are experiencing advancing snow cover. Significance StatementThis project quantifies how the Northern Hemisphere’s snow cover has recently changed. Snow cover plays a critical role in the global energy balance due to its high albedo and insulating characteristics and is therefore a prominent indicator of climate change. On a regional scale, the spatial consistency of snow cover influences surface temperatures via variations in absorbed solar radiation, while continental-scale snow cover acts to maintain thermal stability in the Arctic and subarctic regions, leading to spatial and temporal impacts on global circulation patterns. Changing snow presence in Arctic regions could influence large-scale releases of carbon and methane gas. Given the importance of snow cover, understanding its trends enhances our understanding of climate change.more » « less
-
Abstract With a high NIR reflection, a transparent radiative cooling photonic structure consisting of 2D silica gratings atop ZnO/Ag/ZnO is conceived and demonstrated. With 77% visible light transmitted, 57% NIR solar radiation reflected and 91% thermal infrared radiation emitted, a synthetical cooling is realized by this photonic structure. The theoretical total cooling power of this structure is more than double that of a planar silica and is 63.3% higher than that of a typical NIR reflecting filter, that is, ZnO/Ag/ZnO film. The field test facing the sunlight shows that the air temperature inside a chamber sealed with this structure is 12.5 and 2.5 °C lower than that sealed with planar silica and ZnO/Ag/ZnO, respectively. This work shows that the concept of daytime radiative cooling can be applied in combination with the utilization of visible light and the proposed ultrathin photonic structure shows potentials for passive radiative cooling of transparent applications.more » « less
An official website of the United States government
