Abstract Tree stems exchange CO2, CH4and N2O with the atmosphere but the magnitudes, patterns and drivers of these greenhouse gas (GHG) fluxes remain poorly understood. Our understanding mainly comes from static-manual measurements, which provide limited information on the temporal variability and magnitude of these fluxes. We measured hourly CO2, CH4and N2O fluxes at two stem heights and adjacent soils within an upland temperate forest. We analyzed diurnal and seasonal variability of fluxes and biophysical drivers (i.e., temperature, soil moisture, sap flux). Tree stems were a net source of CO2(3.80 ± 0.18 µmol m−2s−1; mean ± 95% CI) and CH4(0.37 ± 0.18 nmol m−2s−1), but a sink for N2O (−0.016 ± 0.008 nmol m−2s−1). Time series analysis showed diurnal temporal correlations between these gases with temperature or sap flux for certain days. CO2and CH4showed a clear seasonal pattern explained by temperature, soil water content and sap flux. Relationships between stem, soil fluxes and their drivers suggest that CH4for stem emissions could be partially produced belowground. High-frequency measurements demonstrate that: a) tree stems exchange GHGs with the atmosphere at multiple time scales; and b) are needed to better estimate fluxes magnitudes and understand underlying mechanisms of GHG stem emissions.
more »
« less
The paradox of assessing greenhouse gases from soils for nature-based solutions
Abstract. Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. Technological advancesallow us to measure multiple GHGs simultaneously, and now it is possible to provide complete GHG budgets from soils (i.e., CO2, CH4,and N2O fluxes). We propose that there is a conflict between the convenience of simultaneously measuring multiple soil GHG fluxes at fixedtime intervals (e.g., once or twice per month) and the intrinsic temporal variability in and patterns of different GHG fluxes. Information derived fromfixed time intervals – commonly done during manual field campaigns – had limitations to reproducing statistical properties, temporal dependence,annual budgets, and associated uncertainty when compared with information derived from continuous measurements (i.e., automated hourly measurements)for all soil GHG fluxes. We present a novel approach (i.e., temporal univariate Latin hypercube sampling) that can be applied to provide insightsand optimize monitoring efforts of GHG fluxes across time. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixedtime intervals (mainly when measurements are limited to once per month), but an optimized sampling approach can be used to reduce bias anduncertainty. These results have implications for assessing GHG fluxes from soils and consequently reduce uncertainty in the role of soils innature-based solutions.
more »
« less
- Award ID(s):
- 1652594
- PAR ID:
- 10395721
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 15 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustained global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models.more » « less
-
Abstract Inland waters play a major role in global greenhouse gas (GHG) budgets. The smallest of these systems (i.e., ponds) have a particularly large—but poorly constrained—emissions footprint at the global scale. Much of this uncertainty is due to a poor understanding of temporal variability in emissions. Here, we conducted high‐resolution temporal sampling to quantify GHG exchange between four temperate constructed ponds and the atmosphere on an annual basis. We show these ponds are a net source of GHGs to the atmosphere (564.4 g CO2‐eq m−2 yr−1), driven by highly temporally variable diffusive methane (CH4) emissions. Diffusive CH4release to the atmosphere was twice as high during periods when the ponds had a stratified water column than when it was mixed. Ebullitive CH4release was also higher during stratification. Building ponds to favor mixed conditions thus presents an opportunity to minimize the global GHG footprint of future pond construction.more » « less
-
Abstract Lowland tropical forest soils are relatively N rich and are the largest global source of N2O (a powerful greenhouse gas) to the atmosphere. Despite the importance of tropical N cycling, there have been few direct measurements of N2(an inert gas that can serve as an alternate fate for N2O) in tropical soils, limiting our ability to characterize N budgets, manage soils to reduce N2O production, or predict the future role that N limitation to primary productivity will play in buffering against climate change. We collected soils from across macro‐ and micro‐topographic gradients that have previously been shown to differ in O2availability and trace gas emissions. We then incubated these soils under oxic and anoxic headspaces to explore the relative effect of soil location versus transient redox conditions. No matter where the soils came from, or what headspace O2was used in the incubation, N2emissions dominated the flux of N gas losses. In the macrotopography plots, production of N2and N2O were higher in low O2valleys than on more aerated ridges and slopes. In the microtopography plots, N2emissions from plots with lower mean soil O2(5%–10%) were greater than in plots with higher mean soil O2(10%–20%). We estimate an N gas flux of ∼37 kg N/ha/yr from this forest, 99% as N2. These results suggest that N2fluxes may have been systematically underestimated in these landscapes, and that the measurements we present call for a reevaluation of the N budgets in lowland tropical forest ecosystems.more » « less
-
Abstract Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.more » « less
An official website of the United States government

