Abstract The elliptic flow$$(v_2)$$ of$${\textrm{D}}^{0}$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ mesons were reconstructed at midrapidity$$(|y|<0.8)$$ from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ GeV/c. The result indicates a positive$$v_2$$ for non-prompt$${{\textrm{D}}^{0}}$$ mesons with a significance of 2.7$$\sigma $$ . The non-prompt$${{\textrm{D}}^{0}}$$ -meson$$v_2$$ is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ , and compatible with the$$v_2$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
more »
« less
Topology and Local Geometry of the Eden Model
Abstract The Eden cell growth model is a simple discrete stochastic process which produces a “blob” (aggregation of cells) in $$\mathbb {R}^d$$ : start with one cube in the regular grid, and at each time step add a neighboring cube uniformly at random. This process has been used as a model for the growth of aggregations, tumors, and bacterial colonies and the healing of wounds, among other natural processes. Here, we study the topology and local geometry of the resulting structure, establishing asymptotic bounds for Betti numbers. Our main result is that the Betti numbers at timetgrow at a rate between$$t^{(d-1)/d}$$ and$$P_d(t)$$ , where$$P_d(t)$$ is the size of the site perimeter. Assuming a widely believed conjecture, this establishes the rate of growth of the Betti numbers in every dimension. We also present the results of computational experiments on finer aspects of the geometry and topology, such as persistent homology and the distribution of shapes of holes.
more »
« less
- Award ID(s):
- 2001042
- PAR ID:
- 10395840
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Discrete & Computational Geometry
- ISSN:
- 0179-5376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A model based on a$$U(1)_{T^3_R}$$ extension of the Standard Model can address the mass hierarchy between generations of fermions, explain thermal dark matter abundance, and the muon$$g - 2$$ ,$$R_{(D)}$$ , and$$R_{(D^*)}$$ anomalies. The model contains a light scalar boson$$\phi '$$ and a heavy vector-like quark$$\chi _\textrm{u}$$ that can be probed at CERN’s large hadron collider (LHC). We perform a phenomenology study on the production of$$\phi '$$ and$${\chi }_u$$ particles from proton–proton$$(\textrm{pp})$$ collisions at the LHC at$$\sqrt{s}=13.6$$ TeV, primarily through$$g{-g}$$ and$$t{-\chi _\textrm{u}}$$ fusion. We work under a simplified model approach and directly take the$$\chi _\textrm{u}$$ and$$\phi '$$ masses as free parameters. We perform a phenomenological analysis considering$$\chi _\textrm{u}$$ final states to b-quarks, muons, and neutrinos, and$$\phi '$$ decays to$$\mu ^+\mu ^-$$ . A machine learning algorithm is used to maximize the signal sensitivity, considering an integrated luminosity of 3000$$\text {fb}^{-1}$$ . The proposed methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constraints.more » « less
-
Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .more » « less
-
Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ , isothermal compressibility$$\kappa _T(T)$$ , and self-diffusion coefficientsD(T) of H$$_2$$ O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ MPa,$$T_c = 159 \pm 6$$ K, and$$\rho _c = 1.02 \pm 0.01$$ g/cm$$^3$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ O is estimated to be$$P_c = 176 \pm 4$$ MPa,$$T_c = 177 \pm 2$$ K, and$$\rho _c = 1.13 \pm 0.01$$ g/cm$$^3$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ MPa,$$T_c = 175 \pm 2$$ K, and$$\rho _c = 1.03 \pm 0.01$$ g/cm$$^3$$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ for D$$_2$$ O and, particularly, H$$_2$$ O suggest that improved water models are needed for the study of supercooled water.more » « less
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
An official website of the United States government
