skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodechlorination of Alachlor Using a Molecular Electrocatalyst
Abstract Reductive hydrodechlorination is an effective approach to enhance the degradation rate of chlorinated herbicides such as alachlor, which are frequently detected in ground and surface water. In this study, a cobalt porphyrin complex with eight triazole units and alkyl chains,CoPor8T, was synthesized to catalyze the reductive hydrodechlorination of alachlor. Mechanistic study was performed using a combination of voltametric, spectroscopic, and electrospectroscopic techniques. A conversion yield of 84 % at −1.8 V vs. Fc/Fc+and chloride ion concentration of 96 % was obtained after electrocatalysis. This work provides a new avenue of using molecular catalysts for electrocatalytic chlorinated herbicide remediation.  more » « less
Award ID(s):
2051260
PAR ID:
10395861
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemCatChem
Volume:
15
Issue:
5
ISSN:
1867-3880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrocatalytic proton reduction to form dihydrogen (H2) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main‐group‐element‐based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (−4.6 mA cm−2at −1.7 V vs. Fc/Fc+) and high selectivity (H2Faradaic efficiency of 94 % at −1.7 V vs. Fc/Fc+) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax) for H2production was obtained as 1099 s−1. Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron‐chemical‐electron‐chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction. 
    more » « less
  2. Abstract Two donor–acceptor (D–A) polymers are obtained by coupling difluoro‐ and dichloro‐substituted forms of the electron‐deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1are obtained from the chlorinated and fluorinated polymers with N‐DMBI, respectively, and 12.4 and 2.4 S cm−1are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop‐cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0 µW m−1K−2, respectively. Doping of PClClTVT with N‐DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N‐DMBI as dopant remained up to 4.9 S m−1after 222 days in the air, the longest for an n‐doped polymer stored in air, with a thermoelectric power factor of 9.3 µW m−1K−2. However, the conductivity of PFClTVT‐based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X‐ray scattering and atomic force microscopy. 
    more » « less
  3. Abstract The industrial importance of the CC double bond difunctionalization in vegetable oils/fatty acid chains motivates computational studies aimed at helping to improve experimental protocols. The CC double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH3CO3H), and performic acid (HCO3H) oxidizing agents. The epoxide ring‐opening mechanism is calculated in the presence of ZnCl2, NiCl2, and FeCl2Lewis acidic catalysts. Computations show that H2O2(∆G= 39 kcal/mol,TS1HP) is not an effective oxidizing agent compared to CH3CO3H (∆G= 29.8 kcal/mol,TS1PA) and HCO3H (∆G= 26.7 kcal/mol,TS1PF). The FeCl2(∆G= 14.7 kcal/mol,TS1FC) coordination to the epoxide oxygen facilitates the ring‐opening via lower energy barriers compared to the ZnCl2(∆G= 19.5 kcal/mol,TS1ZC) and NiCl2(∆G= 29.4 kcal/mol,TS1NC) coordination. ZnCl2was frequently utilized as a catalyst in laboratory‐scale procedures. The energetic span model identifies the FeCl2(FC) catalytic cycle as the best option for the epoxide ring‐opening. 
    more » « less
  4. Introduction:Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain’s reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes. Methods:In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes. Results:We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10−3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10−21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity. Discussion:The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing. 
    more » « less
  5. Abstract The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process. 
    more » « less