Mechanical force drives distinct chemical reactions; yet, its vectoral nature results in complicated coupling with reaction trajectories. Here, we utilize a physical organic model inspired by the classical Morse potential and its differential forms to identify effective force constant (keff) and reaction energy (ΔE) as key molecular features that govern mechanochemical kinetics. Through a comprehensive experimental and computational investigation with four norborn-2-en-7-one (NEO) mechanophores, we establish the relationship between these features and the force-dependent energetic changes along the reaction pathways. We show that the complex kinetic behavior of the tensioned bonds is generally and quantitatively predicted by a simple multivariate linear regression based on the two easily computed features with a straightforward workflow. These results demonstrate a general mechanistic framework for mechanochemical reactions under tensile force and provide a highly accessible tool for the large-scale computational screening in the design of mechanophores.
more »
« less
Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico
- Award ID(s):
- 0610487
- PAR ID:
- 10395894
- Date Published:
- Journal Name:
- Coral Reefs
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 0722-4028
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spread tow carbon fiber composites are receiving increased attention for diverse applications in space and sports gear due to their thin form, which is suitable for deployable structures, and high tensile strength. Their compressive strength, however, is much lower than their tensile strength due to low interlaminar strength. Herein we report a facile technique to enhance their performance through interlaminar insertion of aligned carbon nanotube (CNT) sheets. The inserted CNT sheets also provide electrical conductivity in the composites even at a low CNT loading below the electrical percolation threshold established for CNT-filled composites. Mechanical and electrical characterization was conducted on the CNT sheet-inserted composites and the baseline composites. Results show that the CNT sheets increase the compressive strength by 14.7% compared with the baseline. Such an increase is attributed to the increased adhesion provided by the inserted CNT sheets at the interface between neighboring plies, which also increases the interlaminar shear strength by 33.0% and the interfacial mode-II fracture toughness by 34.6% compared with the baseline composites without inserting CNT sheets. The well-aligned CNT sheet structure maintained between the neighboring plies contributed to a 64.7% increase in electrical conductivity compared with the baseline composites. The findings indicate that the insertion of well-aligned ultrathin CNT sheets in the interlaminar region of a spread tow carbon fiber composite provides significant enhancement in mechanical and electrical performance, paving the path toward applications where both mechanical and electrical performances are crucial, such as for structural health monitoring, lightning protection, and de-icing in aircraft and wind blades.more » « less
-
Abstract The dehydration and decarbonation in the subducting slab are intricately related and the knowledge of the physical properties of the resulting C–H–O fluid is crucial to interpret the petrological, geochemical, and geophysical processes associated with subduction zones. In this study, we investigate the C–H–O fluid released during the progressive devolatilization of carbonate-bearing serpentine-polymorph chrysotile, with in situ electrical conductivity measurements at high pressures and temperatures. The C–H–O fluid produced by carbonated chrysotile exhibits high electrical conductivity compared to carbon-free aqueous fluids and can be an excellent indicator of the migration of carbon in subduction zones. The crystallization of diamond and graphite indicates that the oxidized C–H–O fluids are responsible for the recycling of carbon in the wedge mantle. The carbonate and chrysotile bearing assemblages stabilize dolomite during the devolatilization process. This unique dolomite forming mechanism in chrysotile in subduction slabs may facilitate the transport of carbon into the deep mantle.more » « less
An official website of the United States government

