skip to main content


This content will become publicly available on June 1, 2025

Title: Enhancing the interlaminar adhesion of carbon fiber composites via carbon nanotube sheets
Spread tow carbon fiber composites are receiving increased attention for diverse applications in space and sports gear due to their thin form, which is suitable for deployable structures, and high tensile strength. Their compressive strength, however, is much lower than their tensile strength due to low interlaminar strength. Herein we report a facile technique to enhance their performance through interlaminar insertion of aligned carbon nanotube (CNT) sheets. The inserted CNT sheets also provide electrical conductivity in the composites even at a low CNT loading below the electrical percolation threshold established for CNT-filled composites. Mechanical and electrical characterization was conducted on the CNT sheet-inserted composites and the baseline composites. Results show that the CNT sheets increase the compressive strength by 14.7% compared with the baseline. Such an increase is attributed to the increased adhesion provided by the inserted CNT sheets at the interface between neighboring plies, which also increases the interlaminar shear strength by 33.0% and the interfacial mode-II fracture toughness by 34.6% compared with the baseline composites without inserting CNT sheets. The well-aligned CNT sheet structure maintained between the neighboring plies contributed to a 64.7% increase in electrical conductivity compared with the baseline composites. The findings indicate that the insertion of well-aligned ultrathin CNT sheets in the interlaminar region of a spread tow carbon fiber composite provides significant enhancement in mechanical and electrical performance, paving the path toward applications where both mechanical and electrical performances are crucial, such as for structural health monitoring, lightning protection, and de-icing in aircraft and wind blades.  more » « less
Award ID(s):
2219347
PAR ID:
10553074
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
www.academia.edu
Date Published:
Journal Name:
Academia Materials Science
Volume:
1
Issue:
2
ISSN:
2997-2027
Subject(s) / Keyword(s):
spread tow carbon fiber, compressive strength, interlaminar shear strength (ILSS), mode-II fracture toughness, fractographic analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications. 
    more » « less
  2. Abstract

    Highly conductive and mechanically strong microfibers are attractive in energy storage, thermal management, and wearable electronics. Here, a highly conductive and strong carbon nanotube/nanofibrillated cellulose (CNT–NFC) composite microfiber is developed via a fast and scalable 3D‐printing method. CNTs are successfully dispersed in an aqueous solution using 2,2,6,6‐tetramethylpiperidinyl‐1‐oxyl (TEMPO) oxidated NFCs, resulting in a mixture solution with an obvious shear‐thinning property. Both NFC and CNT fibers inside the all‐fiber‐based microfibers are well aligned, which helps to improve the interaction and percolation between these two building blocks, leading to a combination of high mechanical strength (247 ± 5 MPa) and electrical conductivity (216.7 ± 10 S cm−1). Molecular modeling is applied to offer further insights into the role of CNT–NFC fiber alignment for the excellent mechanical strength. The combination of high electrical conductivity, mechanical strength, and the fast yet scalable 3D‐printing technology positions the CNT–NFC composite microfiber as a promising candidate for wearable electronic devices.

     
    more » « less
  3. Strong, tough, and lightweight composites are increasingly needed for diverse applications, from wind turbines to cars and aircraft. These composites typically contain sheets of strong and high-modulus fibers in a matrix that are joined with other materials to resist fracture. Coupling these dissimilar materials together is challenging to enhance delamination properties at their interface. We herein investigate using a trace amount of carbon nanotube sheets to improve the coupling between composite skins and core in a composite sandwich. Ultra-thin (~100 nm) forest-drawn multi-walled carbon nanotube (MWNT) sheets are interleaved within the skin/core interphase, with MWNTs aligned in the longitudinal direction. The mechanical behavior is characterized by end notched flexural testing (ENF). With two MWNT sheets placed in the skin/core interphase, the following performance enhancements are achieved: 36.8 % increase in flexural strength; 127.3 % and 125.7 % increases in mode I & II fracture toughness values, respectively; and 152.8 % increase in interfacial shear strength (IFSS). These are achieved with negligible weight gain of the composite sandwich (0.084 wt% increase over the baseline sandwich without MWNT sheets). The finite element simulation results show that MWNT sheets enhance the skin/core coupling by reducing stress concentration, enabling the transition from catastrophic brittle failure to a stable ductile failure mode. The MWNT sheets interleaved sandwich composites are thus demonstrated to be stronger and tougher while providing electrical conductivity (4.3 × 104 S/m) at the skin/core interface for potential de-icing, electromagnetic interference shielding, and structural health monitoring. 
    more » « less
  4. The substitution of traditional copper power transmission cables with lightweight copper–carbon nanotube (Cu–CNT) composite fibers is critical for reducing the weight, fuel consumption, and CO2 emissions of automobiles and aircrafts. Such a replacement will also allow for lowering the transmission power loss in copper cables resulting in a decrease in coal and gas consumption, and ultimately diminishing the carbon footprint. In this work, we created a lightweight Cu–CNT composite fiber through a multistep scalable process, including spinning, densification, functionalization, and double-layer copper deposition. The characterization and testing of the fabricated fiber included surface morphology, electrical conductivity, mechanical strength, crystallinity, and ampacity (current density). The electrical conductivity of the resultant composite fiber was measured to be 0.5 × 106 S/m with an ampacity of 0.18 × 105 A/cm2. The copper-coated CNT fibers were 16 times lighter and 2.7 times stronger than copper wire, as they revealed a gravimetric density of 0.4 g/cm3 and a mechanical strength of 0.68 GPa, suggesting a great potential in future applications as lightweight power transmission cables. 
    more » « less
  5. In this study, unidirectional carbon fiber prepregs that contain long carbon nanofiber (CNF) z threads as a through-thickness (z-directional) reinforcement were manufactured. The CNF z threads are long enough to thread through multiple carbon fiber (CF) arrays, which creates a multi-scale CNF/CF/resin-composite. The CNF z-threaded prepregs were manufactured using an electric-field aligned flow-transferring process. It was hypothesized that the CNF z-threads with the zig-zag threading pattern reinforces the interlaminar and intralaminar regions of the CFRP laminate thus improve the compressive strength by reducing the chance of carbon fiber buckling. Compressive testing was performed per modified version of ASTM D695 (i.e., SACMA SRM 1R 94) to evaluate the compressive strength of the CNF z-threaded CFRP (ZT-CFRP) laminates. The samples were manufactured using AS4 carbon fibers, EPON 862/Epikure-W resin and a 1wt% CNF content. ZT-CFRP testing results were compared with unaligned CNF-modified CFRP (UA-CFRP) and unmodified CFRP samples to investigate the impact of the CNF z-threads on the compressive strength. Results showed an increase of ~15% for the compressive strength of ZT CFRPs, whereas the UA-CFRPs experienced a decrease of ~8% when compared to unmodified CFRPs. It was concluded that CNF/carbon fiber interlocking stops and delays crack growth, and helps to stabilize carbon fibers from further buckling. 
    more » « less