skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mark-recapture data of the northern spring salamander (Gyrinophilus porphyriticus) in support of 2023 Lowe et al. Ecology
This dataset includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected during the summer months (June – August) from downstream and upstream reaches in multiple streams in the Hubbard Brook Experimental Forest. Downstream reaches begin at the confluence with the Main Hubbard and extend upstream 500 meters and upstream reaches begin at the weir and extend downstream 500 meters. Downstream reaches contain brook trout and upstream reaches do not. We used a robust design framework with 9 surveys per reach each summer (3 primary occasions with 3 secondary occasions each). Salamanders were captured by hand and marked with either Visual Implant Elastomer and/or a PIT tag. The data table herein is specific to the following publication: Lowe, W.H., B.R. Addis, M.M. Cochrane, and L.K. Swartz. In press. Source-sink dynamics within a complex life history. Ecology. These data are a subset of the primary long term dataset available at https://doi.org/10.6073/pasta/cd5f5a03df194930bf87eb12157b8182 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685
PAR ID:
10395942
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This data set includes spatially explicit mark-recapture data of the\nNorthern Spring Salamander (Gyrinophilus porphyriticus) collected during\nthe summer months (June \u2013 August) from downstream and upstream reaches\nin multiple streams in the Hubbard Brook Experimental Forest. Downstream\nreaches begin at the confluence with the Main Hubbard and extend\nupstream 500 meters and upstream reaches begin at the weir and extend\ndownstream 500 meters. Downstream reaches contain brook trout and\nupstream reaches do not. We used a robust design framework with\napproximately 9 surveys per reach each summer (3 primary occasions with\n3 secondary occasions each). Salamanders were captured by hand and\nmarked with either Visual Implant Elastomer and/or a PIT tag.\n These data were gathered as part of the Hubbard Brook Ecosystem Study\n(HBES). The HBES is a collaborative effort at the Hubbard Brook\nExperimental Forest, which is operated and maintained by the USDA Forest\nService, Northern Research Station.\n These data have been published in the following papers: \n Lowe WH, Addis\nBR, Smith MR, Davenport JM. The spatial structure of variation in\nsalamander survival, body condition and morphology in a headwater stream\nnetwork. Freshwater Biol. 2018;63:1287\u20131299.\nhttps://doi.org/10.1111/fwb.13133\n Lowe, W. H., and Addis, B. R.. 2019. Matching habitat choice and plasticity contribute to phenotype\u2013environment covariation in a stream salamander. Ecology 100( 5):e02661. 10.1002/ecy.2661 \n Lowe, W.H., et al. Hydrologic variability contributes to reduced survival through metamorphosis in a stream salamander. Proceedings of the National Academy of Sciences 2019; 116.39: 19563-19570.\n Bryant, A.R., Gabor, C.R., Swartz, L.K., Wagner, R., Cochrane, M.M., Lowe, W.H. Differences in corticosterone release rates of larval Spring Salamanders (Gyrinophilus porphyriticus) in response to native fish presence. Biology 2022; 11.484. https://doi.org/10.3390/biology11040484\n Addis, B.R., and W.H. Lowe. Environmentally associated variation in dispersal distance affects inbreeding risk in a stream salamander." The American Naturalist 2022."]} 
    more » « less
  2. This data set includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected via telemetry during the summer months (June – September) from 2019 - 2021 from eight reaches in multiple streams in the Hubbard Brook Experimental Forest. Salamanders were captured by hand and marked with PIT-tags. Telemetry surveys occurred weekly. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data are being used to publish the following papers: Cochrane, M. M., B. R. Addis, L. K. Swartz, and W. H. Lowe. 2023. Individual and population growth rates decline with watershed area in a stream salamander. In review Ecology. Cochrane, M. M., and W. H. Lowe. 2023. Floods increase downstream movement of adult and larval life stages of a headwater stream salamander. In prep Freshwater Biology. 
    more » « less
  3. This is a dataset of soil saturated hydraulic conductivity (Ksat) collected from augered boreholes or installed groundwater wells in Watershed 3 of the Hubbard Brook Experimental Forest. Hydraulic conductivity describes the ability of a porous medium such as soil to transmit fluid. It is dependent on both fluid (e.g., viscosity) and porous medium properties, and is a key property for estimating subsurface flow rates. Measurements were collected from near the soil surface (10-15 cm depth) to several meters below the surface. Locations are provided for sites where the confidence in coordinates established by GPS was high. Soil horizons without subordinate designators are approximate since the characterization skill of observers varied. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES) and several other NSF grants over the period from approximately 2007 to 2019. The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Chemical analyses were performed on sieved and dried soil samples collected for the Lateral Weathering project within Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2018-2020. Chemical information corresponds to horizons described in dataset HBR361, which were collected from pits described in the same dataset. Analyses include pH, C, N, exchangeable ions, secondary metals from citrate dithionite and ammonium oxalate in the dark, and total elemental content. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. This dataset consists of chemical analyses of subsurface water samples collected from Watershed 3, Hubbard Brook Experimental Forest, Woodstock, NH, USA from 2009-2015. Samples include groundwater samples pumped from monitoring wells, grab samples of natural groundwater seeps, and soil water samples pumped from Prenart lysimeters. For samples from wells where water table was monitored, depth to water table is given. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less