skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Telemetry mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus), Hubbard Brook Experimental Forest, 2019 – 2021
This data set includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected via telemetry during the summer months (June – September) from 2019 - 2021 from eight reaches in multiple streams in the Hubbard Brook Experimental Forest. Salamanders were captured by hand and marked with PIT-tags. Telemetry surveys occurred weekly. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data are being used to publish the following papers: Cochrane, M. M., B. R. Addis, L. K. Swartz, and W. H. Lowe. 2023. Individual and population growth rates decline with watershed area in a stream salamander. In review Ecology. Cochrane, M. M., and W. H. Lowe. 2023. Floods increase downstream movement of adult and larval life stages of a headwater stream salamander. In prep Freshwater Biology.  more » « less
Award ID(s):
1637685 2224545
PAR ID:
10491724
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This data set includes spatially explicit mark-recapture data of the\nNorthern Spring Salamander (Gyrinophilus porphyriticus) collected during\nthe summer months (June \u2013 August) from downstream and upstream reaches\nin multiple streams in the Hubbard Brook Experimental Forest. Downstream\nreaches begin at the confluence with the Main Hubbard and extend\nupstream 500 meters and upstream reaches begin at the weir and extend\ndownstream 500 meters. Downstream reaches contain brook trout and\nupstream reaches do not. We used a robust design framework with\napproximately 9 surveys per reach each summer (3 primary occasions with\n3 secondary occasions each). Salamanders were captured by hand and\nmarked with either Visual Implant Elastomer and/or a PIT tag.\n These data were gathered as part of the Hubbard Brook Ecosystem Study\n(HBES). The HBES is a collaborative effort at the Hubbard Brook\nExperimental Forest, which is operated and maintained by the USDA Forest\nService, Northern Research Station.\n These data have been published in the following papers: \n Lowe WH, Addis\nBR, Smith MR, Davenport JM. The spatial structure of variation in\nsalamander survival, body condition and morphology in a headwater stream\nnetwork. Freshwater Biol. 2018;63:1287\u20131299.\nhttps://doi.org/10.1111/fwb.13133\n Lowe, W. H., and Addis, B. R.. 2019. Matching habitat choice and plasticity contribute to phenotype\u2013environment covariation in a stream salamander. Ecology 100( 5):e02661. 10.1002/ecy.2661 \n Lowe, W.H., et al. Hydrologic variability contributes to reduced survival through metamorphosis in a stream salamander. Proceedings of the National Academy of Sciences 2019; 116.39: 19563-19570.\n Bryant, A.R., Gabor, C.R., Swartz, L.K., Wagner, R., Cochrane, M.M., Lowe, W.H. Differences in corticosterone release rates of larval Spring Salamanders (Gyrinophilus porphyriticus) in response to native fish presence. Biology 2022; 11.484. https://doi.org/10.3390/biology11040484\n Addis, B.R., and W.H. Lowe. Environmentally associated variation in dispersal distance affects inbreeding risk in a stream salamander." The American Naturalist 2022."]} 
    more » « less
  2. This dataset includes spatially explicit mark-recapture data of the Northern Spring Salamander (Gyrinophilus porphyriticus) collected during the summer months (June – August) from downstream and upstream reaches in multiple streams in the Hubbard Brook Experimental Forest. Downstream reaches begin at the confluence with the Main Hubbard and extend upstream 500 meters and upstream reaches begin at the weir and extend downstream 500 meters. Downstream reaches contain brook trout and upstream reaches do not. We used a robust design framework with 9 surveys per reach each summer (3 primary occasions with 3 secondary occasions each). Salamanders were captured by hand and marked with either Visual Implant Elastomer and/or a PIT tag. The data table herein is specific to the following publication: Lowe, W.H., B.R. Addis, M.M. Cochrane, and L.K. Swartz. In press. Source-sink dynamics within a complex life history. Ecology. These data are a subset of the primary long term dataset available at https://doi.org/10.6073/pasta/cd5f5a03df194930bf87eb12157b8182 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. This project was designed to describe fine-scale population genetic differentiation of the stream salamander Gryinophilus porphyriticus among five study streams in the Hubbard Brook Experimental Forest. The data are paired with intensive capture-recapture data to assess direct fitness effects of individual genetic diversity, including effects of individual multilocus heterozygosity on stage-specific survival probabilities. This dataset publishes a manifest of the genomic sequence reads submitted to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). These samples are published at NCBI under the BioProject ID 1090913 (https://www.ncbi.nlm.nih.gov/bioproject/1090913). The tables here include sample metadata and the NCBI URLs to each sample. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less
  5. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less