This paper used an analytic based 3-D second order vector potential model to study the vertical dynamic force ripple and dynamic airgap height change when using a one pole-pair electrodynamic wheel (EDW) maglev vehicle. A one-pole pair EDW creates the lowest lift specific power; however transient finite element analysis (FEA) also shows that the one pole-pair EDW will create a large oscillating vertical force when maintaining a static airgap height. A dynamically coupled eddy current model was used to confirm that when the airgap length is allowed to change with time then an increase in vertical airgap creates a large decrease in lift force thereby mitigating any large oscillatory airgap height changes from being created by the one pole-pair EDW. The small airgap height variation was exper-imentally confirmed by using a four-wheeled proof-of-principle radial EDW maglev vehicle.
more »
« less
Flange Wrinkling in Deep-Drawing: Experiments, Simulations and a Reduced-Order Model
Flange wrinkling is often seen in deep-drawing process when the applied blankholding force is too small. This paper investigates the plastic wrinkling of flange under a constant blankholding force. A series of deep-drawing experiments of AA1100-O blanks are conducted with different blankholding forces. The critical cup height and wrinkling wave numbers for each case is established. A reduced-order model of flange wrinkling is developed using the energy method, which is implemented to predict the flange wrinkling of AA1100-O sheet by incrementally updating the flange geometry and material hardening parameters during the drawing process. A deep-drawing finite element model is developed in ABAQUS/standard to simulate the flange wrinkling of AA1100-O blanks under constant blankholding force. The predicted cup height and wave numbers from the finite element model and reduced-order model are compared with the experimental results, which demonstrates the accuracy of the reduced-order model, and its potential application in fast prediction of wrinkling in deep-drawing process.
more »
« less
- Award ID(s):
- 1727490
- PAR ID:
- 10396186
- Date Published:
- Journal Name:
- Journal of Manufacturing and Materials Processing
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2504-4494
- Page Range / eLocation ID:
- 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Linear theory has long been used to study mountain waves and has been successful in describing much of their behaviour. In the simplest theoretical context, that of two‐dimensional steady‐state flow with constant Brunt–Väisälä frequency (N) and horizontal wind speed (U), finite‐amplitude effects are relatively minor until wave breaking occurs. However, in more complex environmental profiles, significant finite‐amplitude effects occur below the wave‐breaking threshold. We constructed a linearized version of a fully nonlinear time‐dependent model, thereby facilitating direct comparisons between linear and finite‐amplitude solutions in cases with upstream profiles representative of typical real‐world events. Beginning with the simplest profile that includes a tropopause, namely an environment with constant upstream wind speed and two layers of constant static stability, we progressively investigate more complex profiles that include vertical wind shear typical of the midlatitude westerlies. Our results demonstrate that, even without wave breaking, finite‐amplitude effects can play an important role in modulating the mountain‐wave amplitude and gravity‐wave drag. The modulation is a function of the tropopause height and is most pronounced when the cross‐ridge flow increases strongly with height.more » « less
-
In each step of the cup game on n cups, a filler distributes up to 1" water among the cups, and then an emptier removes 1 unit of water from a single cup. The emptier’s goal is to minimize the height of the fullest cup, also known as the backlog. The cup emptying game has found extensive applications to processor scheduling, network- switch buffer management, quality of service guarantees, and data- structure deamortization. The greedy emptying algorithm (i.e., always remove from the fullest cup) is known to achieve backlog O(log n) and to be the optimal deterministic algorithm. Randomized algorithms can do significantly better, achieving backlog O(log log n) with high probability, as long as " is not too small. In order to achieve these improvements, the known randomized algorithms require that the filler is an oblivious adversary, unaware of which cups the emptier chooses to empty out of at each step. Such randomized guarantees are known to be impossible against fully adaptive fillers. We show that, even when the filler is just slightly non- adaptive, randomized emptying algorithms can still guarantee a backlog of O(log log n). In particular, we give randomized ran- domized algorithms against an elevated adaptive filler, which is an adaptive filler that can see the precise fills of every cup containing more than 3 units of water, but not of the cups containing less than 3 units.more » « less
-
null (Ed.)Abstract Flapping insect wings experience appreciable deformation due to aerodynamic and inertial forces. This deformation is believed to benefit the insect’s aerodynamic force production as well as energetic efficiency. However, the fluid-structure interaction (FSI) models used to estimate wing deformations are often computationally demanding and are therefore challenged by parametric studies. Here, we develop a simple FSI model of a flapping wing idealized as a two-dimensional pitching-plunging airfoil. Using the Lagrangian formulation, we derive the reduced-order structural framework governing wing’s elastic deformation. We consider two fluid models: quasi-steady Deformable Blade Element Theory (DBET) and Unsteady Vortex Lattice Method (UVLM). DBET is computationally economical but does not provide insight into the flow structure surrounding the wing, whereas UVLM approximates flows but requires more time to solve. For simple flapping kinematics, DBET and UVLM produce similar estimates of the aerodynamic force normal to the surface of a rigid wing. More importantly, when the wing is permitted to deform, DBET and UVLM agree well in predicting wingtip deflection and aerodynamic normal force. The most notable difference between the model predictions is a roughly 20° phase difference in normal force. DBET estimates wing deformation and force production approximately 15 times faster than UVLM for the parameters considered, and both models solve in under a minute when considering 15 flapping periods. Moving forward, we will benchmark both low-order models with respect to high fidelity computational fluid dynamics coupled to finite element analysis, and assess the agreement between DBET and UVLM over a broader range of flapping kinematics.more » « less
-
The Pure Shear (PS) crack specimen is widely employed to assess the fracture toughness of soft elastic materials. It serves as a valuable tool for investigating the behavior of crack growth in a steady-state manner following crack initiation. One of its advantages lies in the fact that the energy release rate (J) remains approximately constant for sufficiently long cracks, independent of crack length. Additionally, the PS specimen facilitates the easy evaluation of J for long cracks by means of a tension test conducted on an uncracked sample. However, the lack of a published expression for short cracks currently restricts the usefulness of this specimen. To overcome this limitation, we conducted a series of finite element (FE) simulations utilizing three different constitutive models, namely the neo-Hookean (NH), Arruda-Boyce (AB), and Mooney-Rivlin (MR) models. Our finite element analysis (FEA) encompassed practical crack lengths and strain levels. The results revealed that under a fixed applied displacement, the energy release rate (J) monotonically increases with the crack length for short cracks, reaches a steady-state value when the crack length exceeds the height of the specimen, and subsequently decreases as the crack approaches the end of the specimen. Drawing from these findings, we propose a simple closed-form expression for J that can be applied to most hyper-elastic models and is suitable for all practical crack lengths, particularly short cracks.more » « less
An official website of the United States government

