skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An “Eddy β-Spiral” mechanism for vertical velocity dipole patterns of isolated oceanic mesoscale eddies
Oceanic eddies accompanied by a significant vertical velocity ( w ) are known to be of great importance for the vertical transport of various climatically, biologically or biogeochemically relevant properties. Using quasi-geostrophic w -thinking to extend the classic “ β -spiral” w -theory for gyre circulations to isolated and nearly symmetric oceanic mesoscale eddies, we propose that their w motion will be dominated by a strong east-west dipole pattern with deep ocean penetrations. Contrasting numerical simulations of idealized isolated eddies together with w -equation diagnostics confirm that the w -dipole is indeed dominated by the “eddy β -spiral” mechanism in the β -plane simulation, whereas this w -dipole expectedly disappears in the f -plane simulation. Analyses of relatively isolated warm and cold eddy examples show good agreement with the proposed mechanism. Our studies further clarify eddy vertical motions, have implications for ocean mixing and vertical transport, and inspire further studies.  more » « less
Award ID(s):
1813611 2219257
PAR ID:
10396549
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean. 
    more » « less
  2. Abstract We examine the ocean energy cycle where the eddies are defined about the ensemble mean of a partially air–sea coupled, eddy-rich ensemble simulation of the North Atlantic. The decomposition about the ensemble mean leads to a parameter-free definition of eddies, which is interpreted as the expression of oceanic chaos. Using the ensemble framework, we define the reservoirs of mean and eddy kinetic energy (MKE and EKE, respectively) and mean total dynamic enthalpy (MTDE). We opt for the usage of dynamic enthalpy (DE) as a proxy for potential energy due to its dynamically consistent relation to hydrostatic pressure in Boussinesq fluids and nonreliance on any reference stratification. The curious result that emerges is that the potential energy reservoir cannot be decomposed into its mean and eddy components, and the eddy flux of DE can be absorbed into the EKE budget as pressure work. We find from the energy cycle that while baroclinic instability, associated with a positive vertical eddy buoyancy flux, tends to peak around February, EKE takes its maximum around September in the wind-driven gyre. Interestingly, the energy input from MKE to EKE, a process sometimes associated with barotropic processes, becomes larger than the vertical eddy buoyancy flux during the summer and autumn. Our results question the common notion that the inverse energy cascade of wintertime EKE energized by baroclinic instability within the mixed layer is solely responsible for the summer-to-autumn peak in EKE and suggest that both the eddy transport of DE and transfer of energy from MKE to EKE contribute to the seasonal EKE maxima. Significance StatementThe Earth system, including the ocean, is chaotic. Namely, the state to be realized is highly sensitive to minute perturbations, a phenomenon commonly known as the “butterfly effect.” Here, we run a sweep of ocean simulations that allow us to disentangle the oceanic expression of chaos from the oceanic response to the atmosphere. We investigate the energy pathways between the two in a physically consistent manner in the North Atlantic region. Our approach can be extended to robustly examine the temporal change of oceanic energy and heat distribution under a warming climate. 
    more » « less
  3. Abstract Mesoscale eddies modulate the stratification, mixing, tracer transport, and dissipation pathways of oceanic flows over a wide range of spatiotemporal scales. The parameterization of buoyancy and momentum fluxes associated with mesoscale eddies thus presents an evolving challenge for ocean modelers, particularly as modern climate models approach eddy‐permitting resolutions. Here we present a parameterization targeting such resolutions through the use of a subgrid mesoscale eddy kinetic energy budget (MEKE) framework. Our study presents two novel insights: (a) both the potential and kinetic energy effects of eddies may be parameterized via a kinetic energy backscatter, with no Gent‐McWilliams along‐isopycnal transport; (b) a dominant factor in ensuring a physically‐accurate backscatter is the vertical structure of the parameterized momentum fluxes. We present simulations of 1/2° and 1/4° resolution idealized models with backscatter applied to the equivalent barotropic mode. Remarkably, the global kinetic and potential energies, isopycnal structure, and vertical energy partitioning show significantly improved agreement with a 1/32° reference solution. Our work provides guidance on how to parameterize mesoscale eddy effects in the challenging eddy‐permitting regime. 
    more » « less
  4. Abstract Surface and upper-ocean measurements of mesoscale eddies have revealed the central role they play in ocean transport, but their interior and deep ocean characteristics remain undersampled and underexplored. In this study, mooring arrays, sampling with high vertical resolution, and a high-resolution global atmosphere–ocean coupled simulation are used to characterize full-depth mesoscale eddy vertical structure. The vertical structure of eddy kinetic energy, e.g., partitioning of barotropic to baroclinic eddy kinetic energy or vertical modal structure, is shown to depend partly on bathymetric slope and roughness. This influence is contextualized alongside additional factors, such as latitude and vertical density stratification, to present a global landscape of vertical structure. The results generally reveal eddy vertical structure to decay with increasing depth, consistent with theoretical expectations relating to the roles of surface-intensified stratification and buoyancy anomalies. However, at high latitudes and where the seafloor is markedly flat and smooth (approximately 20% of the ocean’s area), mesoscale eddy vertical structures are significantly more barotropic by an approximate factor of 2–5. From a climate modeling perspective, these results can inform the construction, implementation, and improvement of energetic parameterizations that account for the underrepresentation of mesoscale eddies and their effects. They also offer expectation as to a landscape of eddy vertical structure to be used in inferring vertical structure from surface measurements. Significance StatementThis work addresses the question of how do ocean seafloor features (bathymetry) affect the vertical structure of ocean currents and eddies? Seafloor features modify eddies in complex ways not often accounted for in global ocean simulations. We analyze high-resolution velocity observations, find diverse structures at four mooring sites, and consider how sloping and rough bathymetry change distributions of eddy kinetic energy throughout the water column. Comparison to theory and model output reveals a relationship between vertical structure and bathymetry. These results show that vertical structures vary significantly with bathymetry, density stratification, and latitude and contribute to model development efforts to reproduce the effects of eddy turbulence without explicit representation. These results also enhance interpretations of more numerous surface observations. 
    more » « less
  5. Oceanic motions across meso‐, submeso‐, and turbulent scales play distinct roles in vertical heat transport (VHT) between the ocean's surface and its interior. While it is commonly understood that during summertime the enhanced stratification due to increased solar radiation typically results in an reduced upper‐ocean vertical exchange, our study reveals a significant upward VHT associated with submesoscale fronts (<30 km) through high‐resolution observations in the eddy‐active South China Sea. The observation‐based VHT reaches ∼100 W m−2and extends to ∼150 m deep at the fronts between eddies. Combined with microstructure observations, this study demonstrates that mixing process can only partly offset the strong upward VHT by inducing a downward heat flux of 0.5–10 W m−2. Thus, the submesoscale‐associated VHT is effectively heating the subsurface layer. These findings offer a quantitative perspective on the scale‐dependent nature of VHT, with crucial implications for the climate system. 
    more » « less