skip to main content


Title: An “Eddy β-Spiral” mechanism for vertical velocity dipole patterns of isolated oceanic mesoscale eddies
Oceanic eddies accompanied by a significant vertical velocity ( w ) are known to be of great importance for the vertical transport of various climatically, biologically or biogeochemically relevant properties. Using quasi-geostrophic w -thinking to extend the classic “ β -spiral” w -theory for gyre circulations to isolated and nearly symmetric oceanic mesoscale eddies, we propose that their w motion will be dominated by a strong east-west dipole pattern with deep ocean penetrations. Contrasting numerical simulations of idealized isolated eddies together with w -equation diagnostics confirm that the w -dipole is indeed dominated by the “eddy β -spiral” mechanism in the β -plane simulation, whereas this w -dipole expectedly disappears in the f -plane simulation. Analyses of relatively isolated warm and cold eddy examples show good agreement with the proposed mechanism. Our studies further clarify eddy vertical motions, have implications for ocean mixing and vertical transport, and inspire further studies.  more » « less
Award ID(s):
1813611 2219257
NSF-PAR ID:
10396549
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  2. Abstract

    We examine the ocean energy cycle where the eddies are defined about the ensemble mean of a partially air–sea coupled, eddy-rich ensemble simulation of the North Atlantic. The decomposition about the ensemble mean leads to a parameter-free definition of eddies, which is interpreted as the expression of oceanic chaos. Using the ensemble framework, we define the reservoirs of mean and eddy kinetic energy (MKE and EKE, respectively) and mean total dynamic enthalpy (MTDE). We opt for the usage of dynamic enthalpy (DE) as a proxy for potential energy due to its dynamically consistent relation to hydrostatic pressure in Boussinesq fluids and nonreliance on any reference stratification. The curious result that emerges is that the potential energy reservoir cannot be decomposed into its mean and eddy components, and the eddy flux of DE can be absorbed into the EKE budget as pressure work. We find from the energy cycle that while baroclinic instability, associated with a positive vertical eddy buoyancy flux, tends to peak around February, EKE takes its maximum around September in the wind-driven gyre. Interestingly, the energy input from MKE to EKE, a process sometimes associated with barotropic processes, becomes larger than the vertical eddy buoyancy flux during the summer and autumn. Our results question the common notion that the inverse energy cascade of wintertime EKE energized by baroclinic instability within the mixed layer is solely responsible for the summer-to-autumn peak in EKE and suggest that both the eddy transport of DE and transfer of energy from MKE to EKE contribute to the seasonal EKE maxima.

    Significance Statement

    The Earth system, including the ocean, is chaotic. Namely, the state to be realized is highly sensitive to minute perturbations, a phenomenon commonly known as the “butterfly effect.” Here, we run a sweep of ocean simulations that allow us to disentangle the oceanic expression of chaos from the oceanic response to the atmosphere. We investigate the energy pathways between the two in a physically consistent manner in the North Atlantic region. Our approach can be extended to robustly examine the temporal change of oceanic energy and heat distribution under a warming climate.

     
    more » « less
  3. Abstract

    The Southern Ocean plays a major role in global air–sea carbon fluxes, with some estimates suggesting it contributes to up to 40% of the oceanic anthropogenic carbon dioxide uptake, despite only comprising about 20% of oceanic surface area. Thus, the Southern Ocean overturning, the circulation that transports tracers between the surface and deep ocean interior, is particularly important for climate. Recent studies show that vertical velocities and tracer transport are largest just downstream of bottom topography; these quantities are related to the overturning, but provide incomplete information about the net Lagrangian transport, usually described with the residual-mean theory in a zonally integrated sense. This study uses an idealized Southern Ocean–like channel model with particle tracking to visualize the thickness-weighted velocities that capture the net overturning transport of a parcel, connecting residual-mean overturning theory to the three-dimensional, localized nature of the overturning. From this, we split the flow into three main drivers of transport: a wind-driven Ekman pumping into or out of a density layer, and standing eddies and transient eddies, both of which are localized near the topography. In this framework, the three-dimensional overturning circulation is not a small residual between the eddy and Eulerian-mean transport. The existence of a ridge weakens the response of the overturning to changes in wind, especially in the lower cell. This local understanding of the overturning framework suggests that careful modeling and sampling of specific regions near topography in the Southern Ocean are vital to understand climate sensitivity, transport, carbon export, and connections with the oceans to the north.

     
    more » « less
  4. Abstract Observations from the past decades have promoted the idea of a long-lived anticyclonic vortex residing in the Lofoten Basin. Despite repeatedly recorded intense anticyclones, the observations cannot firmly decide whether the signature is of a single vortex or a succession of ephemeral vortices. A vortex persisting for decades requires some reinvigoration mechanism. Wintertime convection and vortex merging have been proposed candidates. We examine Lofoten Basin vortex dynamics using a high-resolution regional ocean model. The model is initialized from a coarser state with a weak eddy field. The slope current intensifies and sheds anticyclonic eddies that drift into the basin. After half a year, an anticyclone arrives at the center, providing the nucleus for a vortex that remains distinct throughout the simulation. Analyses show that this vortex is regenerated by repeated absorption and vertical stacking of lighter anticyclones. This compresses and—in concert with potential vorticity conservation—intensifies the combined vortex, which becomes more vertically stratified and also expels some fluid in the process. Wintertime convection serves mainly to vertically homogenize and densify the vortex, rather than intensifying it. Further, topographic guiding of anticyclones shed from the continental slope is vital for the existence and reinvigoration of the Lofoten vortex. These results offer a new perspective on the regeneration of oceanic anticyclones. In this scenario the Lofoten vortex is maintained through repeated merging events. Fluid remains gradually exchanged, although the vortex is identifiable as a persistent extremum in potential vorticity. 
    more » « less
  5. Abstract Antarctic Bottom Water is primarily formed via overflows of dense shelf water (DSW) around the Antarctic continental margins. The dynamics of these overflows therefore influence the global abyssal stratification and circulation. Previous studies indicate that dense overflows can be unstable, energizing topographic Rossby waves (TRW) over the continental slope. However, it remains unclear how the wavelength and frequency of the TRWs are related to the properties of the overflowing DSW and other environmental conditions, and how the TRW properties influence the downslope transport of DSW. This study uses idealized high-resolution numerical simulations to investigate the dynamics of overflow-forced TRWs and the associated downslope transport of DSW. It is shown that the propagation of TRWs is constrained by the geostrophic along-slope flow speed of the DSW and by the dynamics of linear plane waves, allowing the wavelength and frequency of the waves to be predicted a priori. The rate of downslope DSW transport depends nonmonotonically on the slope steepness: steep slopes approximately suppress TRW formation, resulting in steady, frictionally dominated DSW descent. For slopes of intermediate steepness, the overflow becomes unstable and generates TRWs, accompanied by interfacial form stresses that drive DSW downslope relatively rapidly. For gentle slopes, the TRWs lead to the formation of coherent eddies that inhibit downslope DSW transport. These findings may explain the variable properties of TRWs observed in oceanic overflows, and they imply that the rate at which DSW descends to the abyssal ocean depends sensitively on the manifestation of TRWs and/or nonlinear eddies over the continental slope. 
    more » « less