Abstract Mesoscale and submesoscale processes have crucial impacts on ocean biogeochemistry, importantly enhancing the primary production in nutrient‐deficient ocean regions. Yet, the intricate biophysical interplay still holds mysteries. Using targeted high‐resolution in situ observations in the South China Sea, we reveal that isopycnal submesoscale stirring serves as the primary driver of vertical nutrient transport to sustain the dome‐shaped subsurface chlorophyll maximum (SCM) within a long‐lived cyclonic mesoscale eddy. Density surface doming at the eddy core increased light exposure for phytoplankton production, while along‐isopycnal submesoscale stirring disrupted the mesoscale coherence and drove significant vertical exchange of tracers. These physical processes play a crucial role in maintaining the elevated phytoplankton biomass in the eddy core. Our findings shed light on the universal mechanism of how mesoscale and submesoscale coupling enhances primary production in ocean cyclonic eddies, highlighting the pivotal role of submesoscale stirring in structuring marine ecosystems. 
                        more » 
                        « less   
                    
                            
                            Modulation of Phytoplankton Uptake by Mesoscale and Submesoscale Eddies in the California Current System
                        
                    
    
            Abstract Eddies play a crucial role in shaping ocean dynamics by affecting material transport, and generating spatio‐temporal heterogeneity. However, how eddies at different scales modulate biogeochemical transformation rates remains an open question. Applying a multi‐scale decomposition to a numerical simulation, we investigate the respective impact of mesoscale and submesoscale eddies on nutrient transport and biogeochemical cycling in the California Current System. First, the non‐linear nature of nutrient uptake by phytoplankton results in a 50% reduction in primary production in the presence of eddies. Second, eddies shape the vertical transport of nutrients with a strong compensation between mesoscale and submesoscale. Third, the eddy effect on nutrient uptake is controlled by the covariance of temperature, nutrient and phytoplankton fluctuations caused by eddies. Our results shed new light on the tight interaction between non‐linear fluid dynamics and ecosystem processes in realistic eddy regimes, which remain largely under‐resolved by global Earth system models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1847687
- PAR ID:
- 10449710
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Release of iron (Fe) from continental shelves is a major source of this limiting nutrient for phytoplankton in the open ocean, including productive Eastern Boundary Upwelling Systems. The mechanisms governing the transport and fate of Fe along continental margins remain poorly understood, reflecting interaction of physical and biogeochemical processes that are crudely represented by global ocean biogeochemical models. Here, we use a submesoscale‐permitting physical‐biogeochemical model to investigate processes governing the delivery of shelf‐derived Fe to the open ocean along the northern U.S. West Coast. We find that a significant fraction (∼20%) of the Fe released by sediments on the shelf is transported offshore, fertilizing the broader Northeast Pacific Ocean. This transport is governed by two main pathways that reflect interaction between the wind‐driven ocean circulation and Fe release by low‐oxygen sediments: the first in the surface boundary layer during upwelling events; the second in the bottom boundary layer, associated with pervasive interactions of the poleward California Undercurrent with bottom topography. In the water column interior, transient and standing eddies strengthen offshore transport, counteracting the onshore pull of the mean upwelling circulation. Several hot‐spots of intense Fe delivery to the open ocean are maintained by standing meanders in the mean current and enhanced by transient eddies and seasonal oxygen depletion. Our results highlight the importance of fine‐scale dynamics for the transport of Fe and shelf‐derived elements from continental margins to the open ocean, and the need to improve representation of these processes in biogeochemical models used for climate studies.more » « less
- 
            Abstract Transitions in phytoplankton community composition are typically attributed to ecological succession even in physically dynamic upwelling systems like the California Current Ecosystem (CCE). An expected succession from a high‐chlorophyll (~ 10μg L−1) diatom‐dominated assemblage to a low‐chlorophyll (< 1.0μg L−1) non‐diatom dominated assemblage was observed during a 2013 summer upwelling event in the CCE. Using an interdisciplinary field‐based space‐for‐time approach leveraging both biogeochemical rate measurements and metatranscriptomics, we suggest that this successional pattern was driven primarily by physical processes. An annually recurring mesoscale eddy‐like feature transported significant quantities of high‐phytoplankton‐biomass coastal water offshore. Chlorophyll was diluted during transport, but diatom contributions to phytoplankton biomass and activity (49–62% observed) did not decline to the extent predicted by dilution (18–24% predicted). Under the space‐for‐time assumption, these trends infer diatom biomass and activity and were stimulated during transport. This is hypothesized to result from decreased contact rates with mortality agents (e.g., viruses) and release from nutrient limitation (confirmed by rate data nearshore), as predicted by the Disturbance‐Recovery hypothesis of phytoplankton bloom formation. Thus, the end point taxonomic composition and activity of the phytoplankton assemblage being transported by the eddy‐like feature were driven by physical processes (mixing) affecting physiological (release from nutrient limitation, increased growth) and ecological (reduced mortality) factors that favored the persistence of the nearshore diatoms during transit. The observed connection between high‐diatom‐biomass coastal waters and non‐diatom‐dominated offshore waters supports the proposed mechanisms for this recurring eddy‐like feature moving seed populations of coastal phytoplankton offshore and thereby sustaining their activity.more » « less
- 
            Abstract The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co‐locate eddies, identified in the Meta3.2DT satellite altimeter‐based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice‐free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.01 Pg C (7 ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 Pg C (2 ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.more » « less
- 
            null (Ed.)Submesoscale circulations influence momentum, buoyancy and transport of biological tracers and pollutants within the upper turbulent layer. How much and how far into the water column this influence extends remain open questions in most of the global ocean. This work evaluates the behavior of neutrally buoyant particles advected in simulations of the northern Gulf of Mexico by analyzing the trajectories of Lagrangian particles released multiple times at the ocean surface and below the mixed layer. The relative role of meso- and submesoscale dynamics is quantified by comparing results in submesoscale permitting and mesoscale resolving simulations. Submesoscale circulations are responsible for greater vertical transport across fixed depth ranges and also across the mixed layer, both into it and away from it, in all seasons. The significance of the submesoscale-induced transport, however, is far greater in winter. In this season, a kernel density estimation and a detailed vertical mixing analysis are performed. It is found that in the large mesoscale Loop Current eddy, upwelling into the mixed layer is the major contributor to the vertical fluxes, despite its clockwise circulation. This is opposite to the behavior simulated in the mesoscale resolving case. In the “submesoscale soup,” away from the large mesoscale structures such as the Loop Current and its detached eddies, upwelling into the mixed layer is distributed more uniformly than downwelling motions from the surface across the base of the mixed layer. Maps of vertical diffusivity indicate that there is an order of magnitude difference among simulations. In the submesoscale permitting case values are distributed around 10 –3 m 2 s –1 in the upper water column in winter, in agreement with recent indirect estimates off the Chilean coast. Diffusivities are greater in the eastern portion of the Gulf, where the submesoscale circulations are more intense due to sustained density gradients supplied by the warmer and saltier Loop Current.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
