skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2219257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The existence of multiple types of El Niño–Southern Oscillation (ENSO), termed ENSO diversity, has been well documented, and its mechanism is under active investigation. In this study, an extended recharge-oscillator model for ENSO diversity is derived from first principles based on the Zebiak–Cane framework. The model consists of three independent variables: the eastern Pacific (EP) sea surface temperature anomaly (SSTA), the central Pacific (CP) SSTA, and the basin-averaged equatorial thermocline fluctuation. Formulations of various thermodynamic and dynamical processes, both linear and nonlinear, are individually derived and then combined to yield the model equations. This approach allows model verification against the observation at the process level. The model-simulated ENSO reproduces the observed ENSO amplitude, asymmetry, and phase locking. Irregular occurrences of multiple ENSO types similar to those identified in the observation are also successfully simulated. This minimalistic conceptual model serves as a promising tool for the process-oriented diagnosis of ENSO and benefits our basic understanding of ENSO diversity. Sensitivity simulations confirm the essential role of nonlinear processes in ENSO asymmetry and diversity. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  2. Abstract The El Niño‐Southern Oscillation (ENSO) influences ocean wave activity across the Pacific, but its effects on island shores are modulated by local weather and selective sheltering of multi‐modal seas. Utilizing 41 years of high‐resolution wave hindcasts, we decipher the season‐ and locality‐dependent connections between ENSO and wave patterns around the Hawaiian Islands. The north and west‐facing shores, exposed to energetic northwest swells during boreal winters, experience the most pronounced ENSO‐related variability, with increased high‐surf activity during El Niño years. While the year‐round trade wind waves exhibit moderate correlation with ENSO, the basin‐wide climate influence is masked by locally accelerated trade winds in channels and around large headlands. The remarkable global‐to‐local pathway through the high‐resolution hindcast enables development of an ENSO‐based semi‐empirical wave model to statistically describe and predict severe wave conditions on vulnerable shores with potential application in coastal risk management and hazard mitigation for Pacific Islands and beyond. 
    more » « less
  3. Abstract Tropical intraseasonal variability (ISV) is dominated by the Madden–Julian oscillation (MJO), and its spatiotemporal characteristics vary with the Indo-Pacific warm-pool background on seasonal and longer time scales. Previous works have suggested ISV dynamics in various frameworks, whereas a unifying view remains challenging. Motivated by the recent advance in moisture mode theory, we revisit the ISV as a leading moisture mode modulated by varying background states derived from a reanalysis, using a moist linear baroclinic model (mLBM) improved with a simple convective scheme relating convective precipitation to tropospheric and boundary layer moisture anomalies and simple cloud-radiative feedback representations. Under a boreal winter background state, this mLBM yielded a large-scale but local eastward-propagating mode with a phase speed of 3–5 m s−1over the warm-pool region, resembling the MJO. Background lower-tropospheric winds and thermodynamic fields are important in determining the growth rate and periodicity of the leading mode, whose stability depends on cloud-radiative feedback and background state variations. We further demonstrate why the MJO is locally contained in the Indo-Pacific warm-pool region. The local thermal/moisture condition and Walker circulation greatly enhance its instability, but outside this region, this mode is heavily damped. Thus, the expansion/contraction of this warm-pool condition may enhance/reduce its instability and expand/reduce its domain of activity. Prescribing El Niño background causes eastward displacement of the wintertime ISV activity, reminiscent of the observed MJO modulations by El Niño. Under a summer background state, the eastward-propagating leading mode resembles the boreal summer ISV but is biased, requiring further model improvements. 
    more » « less
  4. Abstract The intricate currents of the Northwest Pacific Ocean, with strong manifestations along the westside rim, connect tropical and subtropical gyres and significantly influence East Asian and global climates. The El Niño/Southern Oscillation (ENSO) originates in the tropical Pacific Ocean and disrupts this ocean circulation system. However, the spatiotemporal dependence of the impact of ENSO events has yet to be elucidated because of the complexities of both ENSO events and circulation systems, as well as the increased availability of observational data. We thus combined altimeter and drifter observations to demonstrate the distinct tropical and subtropical influences of the circulation system on ENSO diversity. During El Niño years, the North Equatorial Current, North Equatorial Countercurrent, Mindanao Current, Indonesian Throughflow, and the subtropical Kuroshio Current and its Extension region exhibit strengthening, while the tropical Kuroshio Current weakens. The tropical impact is characterized by sea level changes in the warm pool, whereas the subtropical influence is driven by variations in the wind stress curl. The tropical and subtropical influences are amplified during the Centra Pacific El Niño years compared to the Eastern Pacific El Niño years. As the globe warms, these impacts are anticipated to intensify. Thus, strengthening observation systems and refining climate models are essential for understanding and projecting the enhancing influences of ENSO on the Northwest Pacific Oceanic circulation. 
    more » « less
  5. Abstract Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s−1day−1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present. 
    more » « less
  6. Abstract El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO. 
    more » « less
  7. Abstract The Pacific Meridional Mode (PMM) has long been associated with extra‐tropical air‐sea coupling processes, which are thought to influence the development of El Niño‐Southern Oscillation (ENSO). Here we show that the PMM on seasonal to interannual timescales is closely associated with a newly proposed tropical mode known as the ENSO Combination mode (C‐mode), which arises from the nonlinear interaction between ENSO and the background annual cycle in the deep tropics. The PMM exhibits a remarkable resemblance with the C‐mode in atmospheric patterns, spectral characteristics, and local impacts. Based on a simple Hasselmann‐type model, we further demonstrate that the C‐mode‐related atmospheric anomalies can effectively drive PMM‐like sea surface temperature anomalies. As the C‐mode captures seasonally modulated ENSO characteristics, the seasonal‐to‐interannual PMM variability could naturally establish a connection with ENSO, thereby offering an alternative explanation for the observed relationship between PMM and ENSO. 
    more » « less
  8. Abstract In observations, the boreal winter El Niño—Southern Oscillation (ENSO) phase-locking phenomenon is evident in the central-eastern Pacific. In the far eastern equatorial Pacific (FEP) and South American coastal regions, however, the peak of sea surface temperature anomalies (SSTA) tends to occur in the boreal summer, with fewer winter peak events. By separating the direct ENSO forcing from the FEP SSTA, we found that the summer peak preference is contributed by the residual SSTA component, while the ENSO forcing provides only a small probability of winter peak. The dynamics of FEP SSTA phase-locking in observations and its biases in the climate models are investigated by adopting a linear stochastic-dynamical model. In observations, the summer phase-locking of FEP SSTA is controlled by the seasonal modulation of the SSTA damping process. In contrast, in the climate models the strength of FEP SSTA phase-locking is much smaller than observed due to the overly negative SSTA damping rate. 
    more » « less
  9. Abstract El Niño–Southern Oscillation (ENSO) exhibits highly asymmetric temporal evolutions between its warm and cold phases. While El Niño events usually terminate rapidly after their mature phase and show an already established transition into the cold phase by the following summer, many La Niña events tend to persist throughout the second year and even reintensify in the ensuing winter. While many mechanisms were proposed, no consensus has been reached yet and the essential physical processes responsible for the multiyear behavior of La Niña remain to be illustrated. Here, we show that a unique ocean physical process operates during multiyear La Niña events. It is characterized by rapid double reversals of zonal ocean current anomalies in the equatorial Pacific and exhibits a fairly regular near-annual periodicity. Mixed-layer heat budget analyses reveal comparable contributions of the thermocline and zonal advective feedbacks to the SST anomaly growth in the first year of multiyear La Niña events; however, the zonal advective feedback plays a dominant role in the reintensification of La Niña events. Furthermore, the unique ocean process is identified to be closely associated with the preconditioning heat content state in the central to eastern equatorial Pacific before the first year of La Niña, which has been shown in previous studies to play an active role in setting the stage for the future reintensification of La Niña. Despite systematic underestimation, the above oceanic process can be broadly reproduced by state-of-the-art climate models, providing a potential additional source of predictability for the multiyear La Niña events. 
    more » « less
  10. Abstract Five out of six La Niña events since 1998 have lasted two to three years. Why so many long-lasting multiyear La Niña events have emerged recently and whether they will become more common remains unknown. Here we show that ten multiyear La Niña events over the past century had an accelerated trend, with eight of these occurring after 1970. The two types of multiyear La Niña events over this time period followed either a super El Niño or a central Pacific El Niño. We find that multiyear La Niña events differ from single-year La Niñas by a prominent onset rate, which is rooted in the western Pacific warming-enhanced zonal advective feedback for the central Pacific multiyear La Niña events type and thermocline feedback for the super El Niño multiyear La Niña events type. The results from large ensemble climate simulations support the observed multiyear La Niña events–western Pacific warming link. More multiyear La Niña events will exacerbate adverse socioeconomic impacts if the western Pacific continues to warm relative to the central Pacific. 
    more » « less