Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
more »
« less
High-level motor planning allows flexible walking at different gait patterns in a neuromechanical model
Humans can freely adopt gait parameters like walking speed, step length, or cadence on the fly when walking. Planned movement that can be updated online to account for changes in the environment rather than having to rely on habitual, reflexive control that is adapted over long timescales. Here we present a neuromechanical model that accounts for this flexibility by combining movement goals and motor plans on a kinematic task level with low-level spinal feedback loops. We show that the model can walk at a wide range of different gait patterns by choosing a small number of high-level control parameters representing a movement goal. A larger number of parameters governing the low-level reflex loops in the spinal cord, on the other hand, remain fixed. We also show that the model can generalize the learned behavior by recombining the high-level control parameters and walk with gait patterns that it had not encountered before. Furthermore, the model can transition between different gaits without the loss of balance by switching to a new set of control parameters in real time.
more »
« less
- Award ID(s):
- 1822568
- PAR ID:
- 10396669
- Date Published:
- Journal Name:
- Frontiers in Bioengineering and Biotechnology
- Volume:
- 10
- ISSN:
- 2296-4185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Healthy human locomotion functions with good gait symmetry depend on rhythmic coordination of the left and right legs, which can be deteriorated by neurological disorders like stroke and spinal cord injury. Powered exoskeletons are promising devices to improve impaired people's locomotion functions, like gait symmetry. However, given higher uncertainties and the time-varying nature of human-robot interaction, providing personalized robotic assistance from exoskeletons to achieve the best gait symmetry is challenging, especially for people with neurological disorders. In this paper, we propose a hierarchical control framework for a bilateral hip exoskeleton to provide the adaptive optimal hip joint assistance with a control objective of imposing the desired gait symmetry during walking. Three control levels are included in the hierarchical framework, including the high-level control to tune three control parameters based on a policy iteration reinforcement learning approach, the middle-level control to define the desired assistive torque profile based on a delayed output feedback control method, and the low-level control to achieve a good torque trajectory tracking performance. To evaluate the feasibility of the proposed control framework, five healthy young participants are recruited for treadmill walking experiments, where an artificial gait asymmetry is imitated as the hemiparesis post-stroke, and only the ‘paretic’ hip joint is controlled with the proposed framework. The pilot experimental studies demonstrate that the hierarchical control framework for the hip exoskeleton successfully (asymmetry index from 8.8% to − 0.5%) and efficiently (less than 4 minutes) achieved the desired gait symmetry by providing adaptive optimal assistance on the ‘paretic’ hip joint.more » « less
-
Abstract The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters.more » « less
-
null (Ed.)Our group is developing a cyber-physical walking system (CPWS) for people paralyzed by spinal cord injuries (SCI). The current CPWS consists of a functional neuromuscular stimulation (FNS) system and a powered lower-limb exoskeleton for walking with leg movements in the sagittal plane. We are developing neural control systems that learn to assist the user of this CPWS to walk with stability. In a previous publication (Liu et al., Biomimetics, 2019, 4, 28), we showed a neural controller that stabilized a simulated biped in the sagittal plane. We are considering adding degrees of freedom to the CPWS to allow more natural walking movements and improved stability. Thus, in this paper, we present a new neural network enhanced control system that stabilizes a three-dimensional simulated biped model of a human wearing an exoskeleton. Results show that it stabilizes human/exoskeleton models and is robust to impact disturbances. The simulated biped walks at a steady pace in a range of typical human ambulatory speeds from 0.7 to 1.3 m/s, follows waypoints at a precision of 0.3 m, remains stable, and continues walking forward despite impact disturbances and adapts its speed to compensate for persistent external disturbances. Furthermore, the neural network controller stabilizes human models of different statures from 1.4 to 2.2 m tall without any changes to the control parameters. Please see videos at the following link: 3D biped walking control .more » « less
-
Abstract IntroductionHigh-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits. MethodsIn this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics. ResultsLarge between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL. ConclusionSoft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program.more » « less
An official website of the United States government

