AlxGa1−xN/GaN high-electron-mobility transistor (HEMT) structures are key components in electronic devices operating at gigahertz or higher frequencies. In order to optimize such HEMT structures, understanding their electronic response at high frequencies and room temperature is required. Here, we present a study of the room temperature free charge carrier properties of the two-dimensional electron gas (2DEG) in HEMT structures with varying Al content in the AlxGa1−xN barrier layers between x=0.07 and x=0.42. We discuss and compare 2DEG sheet density, mobility, effective mass, sheet resistance, and scattering times, which are determined by theoretical calculations, contactless Hall effect, capacitance-voltage, Eddy current, and cavity-enhanced terahertz optical Hall effect (THz-OHE) measurements using a low-field permanent magnet (0.6 T). From our THz-OHE results, we observe that the measured mobility reduction from x=0.13 to x=0.42 is driven by the decrease in 2DEG scattering time, and not the change in effective mass. For x<0.42, the 2DEG effective mass is found to be larger than for electrons in bulk GaN, which in turn, contributes to a decrease in the principally achievable mobility. From our theoretical calculations, we find that values close to 0.3m0 can be explained by the combined effects of conduction band nonparabolicity, polarons, and hybridization of the electron wavefunction through penetration into the barrier layer.
more »
« less
A perspective on multi-channel technology for the next-generation of GaN power devices
The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology has rapidly developed and is expected to gain a significant market share in an increasing number of applications in the coming years. However, despite the great progress, the performance of current GaN devices is still far from what the GaN material could potentially offer, and a significant reduction of the device on-resistance for a certain blocking voltage is needed. Conventional GaN high-electron-mobility-transistors are based on a single two-dimensional electron gas (2DEG) channel, whose trade-off between electron mobility and carrier density limits the minimum achievable sheet resistance. To overcome such limitations, GaN power devices including multiple, vertically stacked 2DEG channels have recently been proposed, showing much-reduced resistances and excellent voltage blocking capabilities for a wide range of voltage classes from 1 to 10 kV. Such devices resulted in unprecedented high-power figures of merit and exceeded the SiC material limit, unveiling the full potential of lateral GaN power devices. This Letter reviews the recent progress of GaN multi-channel power devices and explores the promising perspective of the multi-channel platform for future power devices.
more »
« less
- PAR ID:
- 10396730
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 19
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 190501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.more » « less
-
To enhance the electron mobility in quantum-well high-electron-mobility transistors (QW HEMTs), we investigate the transport properties in AlN/GaN/AlN heterostructures on Al-polar single-crystal AlN substrates. Theoretical modeling combined with experiment shows that interface roughness scattering due to high electric field in the quantum well limits mobility. Increasing the width of the quantum well to its relaxed form reduces the internal electric field and scattering, resulting in a binary QW HEMT with a high two-dimensional electron gas (2DEG) density of 3.68×1013 cm–2, a mobility of 823 cm2/Vs, and a record-low room temperature (RT) sheet resistance of 206 Ω/□. Further reduction of the quantum well electric field yields a 2DEG density of 2.53×1013 cm–2 and RT mobility > 1000 cm2/V s. These findings will enable future developments in high-voltage and high-power microwave applications on the ultrawide bandgap AlN substrate platform.more » « less
-
The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.more » « less
-
We report the electrical properties of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) structures with a Ga2O3 passivation layer grown by metal–organic chemical vapor deposition (MOCVD). In this study, three different thicknesses of β-Ga2O3 dielectric layers were grown on Al0.3Ga0.7N/GaN structures leading to metal-oxide-semiconductor-HFET or MOSHFET structures. X-ray diffraction (XRD) showed the (2¯01) orientation peaks of β-Ga2O3 in the device structure. The van der Pauw and Hall measurements yield the electron density of ~ 4 × 1018 cm−3 and mobility of ~770 cm2V−1s−1 in the 2-dimensional electron gas (2DEG) channel at room temperature. Capacitance–voltage (C-V) measurement for the on-state 2DEG density for the MOSHFET structure was found to be of the order of ~1.5 × 1013 cm−2. The thickness of the Ga2O3 layer was inversely related to the threshold voltage and the on-state capacitance. The interface charge density between the oxide and Al0.3Ga0.7N barrier layer was found to be of the order of ~1012 cm2eV−1. A significant reduction in leakage current from ~10−4 A/cm2 for HFET to ~10−6 A/cm2 for MOSHFET was observed well beyond pinch-off in the off-stage at -20 V applied gate voltage. The annealing at 900° C of the MOSHFET structures revealed that the Ga2O3 layer was thermally stable at high temperatures resulting in insignificant threshold voltage shifts for annealed samples with respect to as-deposited (unannealed) structures. Our results show that the MOCVD-gown Ga2O3 dielectric layers can be a strong candidate for stable high-power devices.more » « less
An official website of the United States government

