skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the Stellar Wind of the Wolf–Rayet Star in IC 10 X-1
Abstract IC 10 X-1 is an eclipsing high-mass X-ray binary containing a stellar-mass black hole (BH) and a Wolf–Rayet (WR) donor star with an orbital period ofP= 34.9 hr. This binary belongs to a group of systems that can be the progenitors of gravitational-wave sources; hence understanding the dynamics of systems such as IC 10 X-1 is of paramount importance. The prominent Heii4686 emission line (previously used in mass estimates of the BH) is out of phase with the X-ray eclipse, suggesting that this line originates somewhere in the ionized wind of the WR star or in the accretion disk. We obtained 52 spectra from the GEMINI/GMOS archive, observed between 2001 and 2019. We analyzed the spectra both individually, and after binning them by orbital phase to improve the signal-to-noise ratio. The radial-velocity curve from the stacked data is similar to historical results, indicating the overall parameters of the binary have remained constant. However, the Heiiline profile shows a correlation with the X-ray hardness-ratio values; also, we report a pronounced skewness of the line profile, and the skewness varies with orbital phase. These results support a paradigm wherein the Heiiline tracks structures in the stellar wind that are produced by interactions with the BH’s ionizing radiation and the accretion flow. We compare the observable signatures of two alternative hypotheses proposed in the literature: wind irradiation plus shadowing, and accretion disk hotspot; and we explore how the line-profile variations fit into each of these models.  more » « less
Award ID(s):
2109004
PAR ID:
10396766
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
944
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 52
Size(s):
Article No. 52
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a statistical analysis of the He ii 4686 emission line in the spectra of the black hole and Wolf–Rayet (WR) star of the high-mass X-ray binary IC10 X-1. This line is visibly skewed, and the third moment (skewness) varies with the binary’s orbital phase. We describe a new method of extracting such weak/faint features lying barely above a noisy continuum. Using the moments of these features, we have been able to decompose these skewed lines into two symmetric Gaussian profiles as a function of the orbital phase. The astrophysical implications of this decomposition are significant due to the complex nature of wind–accretion stream interactions in such binary systems. Previous studies have already shown a 0.25 phase lag in the radial velocity curve of the star and the X-ray eclipse, which indicates that the He ii emitters might be in the stellar wind, hence not tracing the star’s orbital motion. Results from this work further suggest the existence of two separate emitting regions, one in the stellar wind in the shadow of the WR star and another in the accretion stream that impacts the black hole’s outer accretion disc; and the observed skewed He ii lines can be reproduced by superposition of the two corresponding time-dependent Gaussian emission profiles. 
    more » « less
  2. Abstract Close binary interactions may play a critical role in the formation of the rapidly rotating Be stars. Mass transfer can result in a mass gainer star spun up by the accretion of mass and angular momentum, while the mass donor is stripped of its envelope to form a hot and faint helium star. Far-UV spectroscopy has led to the detection of about 20 such binary Be+sdO systems. Here we report on a 3 yr program of high-quality spectroscopy designed to determine the orbital periods and physical properties of five Be binary systems. These binaries are long orbital period systems withP= 95–237 days and small semiamplitudeK1< 11 km s−1. We combined the Be star velocities with prior sdO measurements to obtain mass ratios. A Doppler tomography algorithm shows the presence of the Heiiλ4686 line in the faint spectrum of the hot companion in four of the targets. We discuss the observed line variability and show evidence of phase-locked variations in the emission profiles of HD 157832, suggesting a possible disk spiral density wave due to the presence of the companion star. The stripped companions in HD 113120 and HD 137387 may have a mass larger than 1.4M, indicating that they could be progenitors of Type Ib and Ic supernovae. 
    more » « less
  3. Interacting binaries are of general interest as laboratories for investigating the physics of accretion, which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar evolution processes that cannot be studied in single stars. Understanding the orbital evolution of binaries is essential in order to model the formation of compact binaries. Here we focus our attention on studying orbital evolution driven by angular momentum loss through stellar winds in massive binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our results to analytic estimates for drag and angular momentum loss. We find that, at leading order, orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to orbital velocities and large accreting companion masses result in high angular momentum loss and a shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple analytic formula that can accurately account for angular momentum losses and changes in the orbit, which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela X-1 and Cygnus X-1 as examples. 
    more » « less
  4. Abstract We examine the UV/X-ray properties of 1378 quasars in order to link empirical correlations to theoretical models of the physical mechanisms dominating quasars as a function of mass and accretion rate. The clarity of these correlations is improved when (1) using Civbroad emission line equivalent width (EQW) and blueshift (relative to systemic) values calculated from high signal-to-noise ratio reconstructions of optical/UV spectra and (2) removing quasars expected to be absorbed based on their UV/X-ray spectral slopes. In addition to using the traditional Civparameter space measures of CivEQW and blueshift, we define a “Civ∥ distance” along a best-fit polynomial curve that incorporates information from both Civparameters. We find that the Civ∥ distance is linearly correlated with both the optical-to-X-ray slope,αox, and broad-line HeiiEQW, which are known spectral energy distribution indicators, but does not require X-ray or high spectral resolution UV observations to compute. The Civ∥ distance may be a better indicator of the mass-weighted accretion rate, parameterized byL/LEdd, than the CivEQW or blueshift alone, as those relationships are known to break down at the extrema. Conversely, there is only a weak correlation with the X-ray energy index (Γ), an alternateL/LEddindicator. We find no X-ray or optical trends in the direction perpendicular to the Civdistance that could be used to reveal differences in accretion disk, wind, or corona structure that could be widening the CivEQW–blueshift distribution. A different parameter (such as metallicity) not traced by these data must come into play. 
    more » « less
  5. All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50  M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster). 
    more » « less