skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Evolution of Binaries under the Influence of Radiation-Driven Winds from a Stellar Companion
Interacting binaries are of general interest as laboratories for investigating the physics of accretion, which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar evolution processes that cannot be studied in single stars. Understanding the orbital evolution of binaries is essential in order to model the formation of compact binaries. Here we focus our attention on studying orbital evolution driven by angular momentum loss through stellar winds in massive binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our results to analytic estimates for drag and angular momentum loss. We find that, at leading order, orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to orbital velocities and large accreting companion masses result in high angular momentum loss and a shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple analytic formula that can accurately account for angular momentum losses and changes in the orbit, which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela X-1 and Cygnus X-1 as examples.  more » « less
Award ID(s):
1909203
PAR ID:
10358780
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wind Roche-lobe overflow (WRLOF) is a mass-transfer mechanism proposed by Mohamed and Podsiadlowski for stellar binaries wherein the wind acceleration zone of the donor star exceeds its Roche-lobe radius, allowing stellar wind material to be transferred to the accretor at enhanced rates. WRLOF may explain characteristics observed in blue lurkers and blue stragglers. While WRLOF has been implemented in rapid population synthesis codes, it has yet to be explored thoroughly in detailed binary models such asMESA(a 1D stellar evolution code), and over a wide range of initial binary configurations. We incorporate WRLOF accretion inMESAto investigate wide low-mass binaries at solar metallicity. We perform a parameter study over the initial orbital periods and stellar masses. In most of the models where we consider angular momentum transfer during accretion, the accretor is spun up to the critical (or breakup) rotation rate. Then we assume the star develops a boosted wind to efficiently reduce the angular momentum so that it could maintain subcritical rotation. Balanced by boosted wind loss, the accretor only gains ∼2% of its total mass, but can maintain a near-critical rotation rate during WRLOF. Notably, the mass-transfer efficiency is significantly smaller than in previous studies in which the rotation of the accretor is ignored. We compare our results to observational data of blue lurkers in M67 and find that the WRLOF mechanism can qualitatively explain the origin of their rapid rotation, their location on the H-R diagram, and their orbital periods. 
    more » « less
  2. null (Ed.)
    Massive Wolf-Rayet (WR) stars in binary systems may produce supernovae capable of emitting long duration gamma ray bursts. Characterizing the structure of the colliding winds in these systems may help constrain the mass loss and transfer properties and help predict their future evolution. I will present new spectropolarimetric data for the possible WR+O binary system WR 71, collected using RSS at the Southern African Large Telescope. WR 71 is a WN6 whose binary status is unknown, but it displays similar spectropolarimetric variations to the known WR+O binary system V444 Cygni. I investigate the orbital and rotational velocity of WR 71's winds by analyzing its polarized emission line profiles as a function of phase, the first analysis of its kind. I compare the line polarization behavior with predictive models of both colliding wind binaries and single stars with co-rotating interaction regions. Describing the wind structure of WR 71 will help determine the rate of mass loss from the system, an important indicator for LGRB progenitors, and shed light on its binary status. 
    more » « less
  3. The current consensus is that at least half of the OB stars are formed in binary or multiple star systems. The evolution of OB stars is greatly influenced by whether the stars begin as close binaries, and the evolution of the binary systems depend on whether the mass transfer is conservative or nonconservative. FUV/NUV spectropolarimetry is poised to answer the latter question. This paper discusses how the Polstar spectropolarimetry mission can characterize the degree of nonconservative mass transfer that occurs at various stages of binary evolution, from the initial mass reversal to the late Algol phase, and quantify its amount. The proposed instrument combines spectroscopic and polarimetric capabilities, where the spectroscopy can resolve Doppler shifts in UV resonance lines with 10 km/s precision, and polarimetry can resolve linear polarization with 10−3 precision or better. The spectroscopy will identify absorption by mass streams and other plasmas seen in projection against the stellar disk as a function of orbital phase, as well as scattering from extended splash structures, including jets. The polarimetry tracks the light coming from material not seen against the stellar disk, allowing the geometry of the scattering to be tracked, resolving ambiguities left by the spectroscopy and light-curve information. For example, nonconservative mass streams ejected in the polar direction will produce polarization of the opposite sign from conservative transfer accreting in the orbital plane. Time domain coverage over a range of phases of the binary orbit are well supported by the Polstar observing strategy. Special attention will be given to the epochs of enhanced systemic mass loss that have been identified from IUE observations (pre-mass reversal and tangential gas stream impact). We show how the history of systemic mass and angular momentum loss/gain episodes can be inferred via ensemble evolution through the r-q diagram. Combining the above elements will significantly improve our understanding of the mass transfer process and the amount of mass that can escape from the system, an important channel for changing the final mass and ultimate supernova of a large number of massive stars found in binaries at close enough separation to undergo interaction. 
    more » « less
  4. Abstract Classical Wolf–Rayet (WR) stars are descendants of massive OB-type stars that have lost their hydrogen-rich envelopes and are in the final stages of stellar evolution, possibly exploding as Type Ib/c supernovae. It is understood that the mechanisms driving this mass loss are either strong stellar winds and or binary interactions, so intense studies of these binaries including their evolution can tell us about the importance of the two pathways in WR formation. WR 138 (HD 193077) has a period of just over 4 yr and was previously reported to be resolved through interferometry. We report on new interferometric data combined with spectroscopic radial velocities in order to provide a three-dimensional orbit of the system. The precision on our parameters tend to be about an order of magnitude better than previous spectroscopic techniques. These measurements provide masses of the stars, namely,MWR= 13.93 ± 1.49MandMO= 26.28 ± 1.71M. The derived orbital parallax agrees with the parallax from Gaia, namely, with a distance of 2.13 kpc. We compare the system’s orbit to models from BPASS, showing that the system likely may have been formed with little interaction but could have formed through some binary interactions either following or at the start of a red supergiant phase but with the most likely scenario occurring as the red supergiant phase starts for a ∼40Mstar. 
    more » « less
  5. Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo. 
    more » « less