skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Rapid metal speciation of cell culture media using reversed‐phase separations and inductively coupled plasma optical emission spectrometry
Abstract

Cell culture media metal content is critical in mammalian cell growth and monoclonal antibody productivity. The variability in metal concentrations has multiple sources of origin. As such, there is a need to analyze media before, during, and after production. Furthermore, it is not the simple presence of a given metal that can impact processes, but also their chemical form that is, speciation. To a first approximation, it is instructive to simply and quickly ascertain if the metals exist as inorganic (free metal) ions or are part of an organometallic complex (ligated). Here we present a simple workflow involving the capture of ligated metals on a fiber stationary phase with passage of the free ions to an inductively coupled plasma optical emission spectrometry for quantification; the captured species are subsequently eluted for quantification. This first level of speciation (free vs. ligated) can be informative towards sources of contaminant metal species and means to assess bioreactor processes.

 
more » « less
Award ID(s):
1624641
NSF-PAR ID:
10396806
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Progress
Volume:
39
Issue:
1
ISSN:
8756-7938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor’s selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+–ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor’s LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain.

     
    more » « less
  2. Abstract

    In this review, recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health, are highlighted. Protein pores use three stochastic sensing‐based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nanochannel. Second, large molecules such as nucleic acids and especially peptides can be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion–ligand chelation/coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady‐state analysis, synthetic nanopores mainly use two strategies (modification and modification‐free) to detect metals. Given the advantages of high sensitivity and selectivity, and label‐free detection, nanopore‐based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.

     
    more » « less
  3. null (Ed.)
    DFT and coupled cluster methods were used to investigate the impact of 3d metals and ligands upon the acidity and activation of coordinated methane C–H bonds. A strong, direct relationship was established between the pKa of coordinated methane and the free energy barriers (ΔG⧧) to subsequent H3C–H activation. The few outliers to this relationship indicated other salient factors (such as thermodynamic stability of the product and ligand–metal coordination type) that impacted the methane activation barrier. High variations in the activation barriers and pKa values were found with a range of 34.8 kcal/mol for the former and 28.6 pKa units for the latter. Clear trends among specific metals and ligands were also derived; metal ions such as CoI, as well as Lewis acids and π-acids, consistently yielded higher acidity for ligated methane and hence lower ΔG⧧. 
    more » « less
  4. Pincer-ligated catalysts that can undergo metal–ligand cooperativity (MLC), whereby H 2 is heterolytically cleaved (with proton transfer to the ligand and hydride transfer to the metal), have emerged as potent catalysts for the hydrogenation of CO 2 and organic carbonyls. Despite the plethora of systems developed that differ in metal/ligand identity, no studies establish how variation of the metal impacts the pertinent thermochemical properties of the catalyst, namely the equilibrium with H 2 , the hydricity of the resulting hydride, and the acidity of the ligand. These parameters can impact the kinetics, scope, and mechanism of catalysis and hence should be established. Herein, we describe how changing the metal (Co, Fe, Mn, Ru) and charge (neutral vs. anionic) impacts these parameters in a series of PNP-ligated catalysts (PNP = 2,6-bis[(di- tert -butylphosphino)methyl]pyridine). A linear correlation between hydricity and ligand p K a (when bound to the metal) is found, indicating that the two parameters are not independent of one another. This trend holds across four metals, two charges, and two different types of ligand (amine/amide and aromatization/de-aromatization). Moreover, the effect of ligand deprotonation on the hydricity of (PNP)(CO)(H)Fe–H and (PNP)(CO)(H)Ru–H is assessed. It is determined that deprotonation to give anionic hydride species enhances the hydricity by ∼16.5 kcal mol −1 across three metals. Taken together, this work suggests that the metal identity has little effect on the thermodynamic parameters for PNP-ligated systems that undergo MLC via (de)aromatization, whilst the effect of charge is significant; moreover, ion-pairing allows for further tuning of the hydricity values. The ramifications of these findings for catalysis are discussed. 
    more » « less
  5. Abstract

    Our understanding of the mechanisms mediating the resilience of organisms to environmental change remains lacking. Heavy metals negatively affect processes at all biological scales, yet organisms inhabiting contaminated environments must maintain homeostasis to survive. Tar Creek in Oklahoma, USA, contains high concentrations of heavy metals and an abundance of Western mosquitofish (Gambusia affinis), though several fish species persist at lower frequency. To test hypotheses about the mechanisms mediating the persistence and abundance of mosquitofish in Tar Creek, we integrated ionomic data from seven resident fish species and transcriptomic data from mosquitofish. We predicted that mosquitofish minimize uptake of heavy metals more than other Tar Creek fish inhabitants and induce transcriptional responses to detoxify metals that enter the body, allowing them to persist in Tar Creek at higher density than species that may lack these responses. Tar Creek populations of all seven fish species accumulated heavy metals, suggesting mosquitofish cannot block uptake more efficiently than other species. We found population‐level gene expression changes between mosquitofish in Tar Creek and nearby unpolluted sites. Gene expression differences primarily occurred in the gill, where we found upregulation of genes involved with lowering transfer of metal ions from the blood into cells and mitigating free radicals. However, many differentially expressed genes were not in known metal response pathways, suggesting multifarious selective regimes and/or previously undocumented pathways could impact tolerance in mosquitofish. Our systems‐level study identified well characterized and putatively new mechanisms that enable mosquitofish to inhabit heavy metal‐contaminated environments.

     
    more » « less