skip to main content


Search for: All records

Award ID contains: 1826030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n -heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n -heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid. 
    more » « less
  2. null (Ed.)
  3. Abstract This study focuses on fabrication of aerogel-coated macroporous polyester fabrics for the purposes of filtration of nanometric airborne particles and potential application in facemasks. Syndiotactic polystyrene (sPS) and polyimide (PI) gels that provide respectively majority macropores (diameter > 50 nm) and mesopores (diameter 2 to 50 nm) are coated onto woven polyester fabrics via a dip coating process. The resultant materials are supercritically dried to obtain aerogelcoated fabrics. The results show that sPS is more suitable for the dip coating process. However, evaporation of the solvent during handling of gel-coated fabrics leads to closure of the surface pores that are later recovered via solvent annealing. The resultant aerogel-coated fabrics offer high air permeability (∼10 –10 m 2 ) and high filtration efficiency (> 99.95%) of airborne sodium chloride test particles of size 25 to 150 nm. 
    more » « less
  4. null (Ed.)
  5. This work focuses on fabrication of multi-hollow polyimide gel and aerogel particles from a surfactant-free oil-in-oil emulsion system using a microfluidic droplet generator operating under dripping mode. The multi-hollow gel and aerogel particles have strong potential in thermal insulation. Under jetting and tip-streaming regime of microfluidic flows, droplets are generated with no occluded liquid phase. The present study investigates a means of designing polyimide gel particles with plurality of internal liquid droplets by strategically manipulating the flow rates of the continuous and dispersed phase liquids through the microfluidic droplet generator. The multi-hollow polyimide aerogel particles obtained after supercritical drying of the gel particles present mesopores, high BET surface area, and excellent prospect for thermal insulation. 
    more » « less