Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets.
more »
« less
Regional Characteristics of Variability in the Northern Hemisphere Wintertime Polar Front Jet and Subtropical Jet in Observations and CMIP6 Models
Abstract Variability in the position and strength of the subtropical jet (STJ) and polar front jet (PFJ) streams has important implications for global and regional climate. Previous studies have related the position and strength of the STJ to tropical thermodynamic processes, whereas the position and strength of the PFJ are more associated with midlatitude eddies. These conclusions have largely resulted from studies using idealized models. In this study, ERA‐Interim reanalysis and CMIP6 global climate models are used to examine month‐to‐month and interannual variability of the wintertime Northern Hemisphere (NH) STJ and PFJ. This study particularly focuses on the regional characteristics of the jet variability, extending previous studies on zonal‐mean jet streams. Consistent with idealized modeling studies, a close relationship is found between tropical outgoing longwave radiation (OLR) and the STJ and between midlatitude lower tropospheric temperature gradients and the PFJ. Variations of both jets are also linked to well‐known teleconnection patterns. Variations in tropical convection over the Pacific Ocean are associated with variations of the NH STJ at most longitudes, with different phases of the El Niño–Southern Oscillation (ENSO) associated with the shift and strengthening of the STJ in different regions. CMIP6 models generally capture these relationships, but the models’ tropical convection is often displaced westward when compared to observations, reflecting a climatological bias in OLR in the western tropical Pacific Ocean in many models. The displaced tropical convection in models excites different paths of Rossby wave propagation, resulting in different ENSO teleconnections on the STJ over North America and Europe.
more »
« less
- Award ID(s):
- 1752900
- PAR ID:
- 10397165
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 22
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interannual variability of tropospheric moisture and temperature are key aspects of Earth’s climate. In this study, monthly mean specific humidity ( q ) and temperature ( T ) variability is analyzed using 12 years of COSMIC-1 (C1) radio occultation retrievals between 60°N and 60°S, with a focus on the tropics. C1 retrievals are relatively independent of the a priori values for q and T within the lower/middle troposphere and upper troposphere/lower stratosphere, respectively. Tropical interannual variability is dominated by El Niño–Southern Oscillation (ENSO). Systematic increases and decreases in zonal mean q and T are observed during the 2009/10 and 2015/16 El Niño events and 2007/08 and 2010/11 La Niña events, respectively. ENSO patterns in q and T are isolated using linear regression, and anomaly magnitudes increase with altitude, reaching a maximum in the upper troposphere. Upper-tropospheric q anomalies expand from the tropics into the midlatitude lower stratosphere, and the T vertical structure is consistent with a moist adiabatic response. C1 results are compared with NCAR’s Whole Atmosphere Community Climate Model (WACCM), forced by observed sea surface temperatures, to evaluate model behavior in an idealized setting. WACCM ENSO variations in q and T generally show consistent behavior with C1 with somewhat smaller magnitudes. Case studies are conducted for major ENSO events during the study period. The spatial variability of q is closely aligned with outgoing longwave radiation (OLR) anomalies. For example, midtropospheric q increases over 100% and OLR decreases over 50 W m −2 over the central Pacific during the 2015/16 El Niño, and substantial regional q and T anomalies are observed throughout the tropics and midlatitudes for each event.more » « less
-
null (Ed.)Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes.more » « less
-
Abstract The El Niño—Southern Oscillation (ENSO) is an important mode of tropical Pacific atmosphere‐ocean variability that drives teleconnections with weather and climate globally. However, prior studies using state‐of‐the‐art climate models lack consensus regarding future ENSO projections and are often impacted by tropical Pacific sea‐surface temperature (SST) biases. We used 173 simulations from 29 climate models participating in the Coupled Model Intercomparison Project, version 6 (CMIP6) to analyze model biases and future ENSO projections. We analyzed two ENSO indices, namely the ENSO Longitude Index (ELI), which measures zonal shifts in tropical Pacific deep convection and accounts for changes in background SST, and the Niño 3.4 index, which measures SST anomalies in the central‐eastern equatorial Pacific. We found that the warm eastern tropical‐subtropical Pacific SST bias typical of previous generations of climate models persists into many of the CMIP6 models. Future projections of ENSO shift toward more El Niño‐like conditions based on ELI in 48% of simulations and 55% of models, in association with a future weakening of the zonal equatorial Pacific SST gradient. On the other hand, none of the models project a significant shift toward La Niña‐like conditions. The standard deviation of the Niño 3.4 index indicates a lack of consensus on whether an increase or decrease in ENSO variability is expected in the future. Finally, we found a possible relationship between historical SST and low‐level cloud cover biases in the ENSO region and future changes in ELI; however, this result may be impacted by limitations in data availability.more » « less
-
Abstract Consensus on the cause of recent midlatitude circulation changes toward a wavier manner in the Northern Hemisphere has not been reached, albeit a number of studies collectively suggest that this phenomenon is driven by global warming and associated Arctic amplification. Here, through a fingerprint analysis of various global simulations and a tropical heating-imposed experiment, we suggest that the suppression of tropical convection along the Inter Tropical Convergence Zone induced by sea surface temperature (SST) cooling trends over the tropical Eastern Pacific contributed to the increased summertime midlatitude waviness in the past 40 years through the generation of a Rossby-wave-train propagating within the jet waveguide and the reduced north-south temperature gradient. This perspective indicates less of an influence from the Arctic amplification on the observed mid-latitude wave amplification than what was previously estimated. This study also emphasizes the need to better predict the tropical Pacific SST variability in order to project the summer jet waviness and consequent weather extremes.more » « less
An official website of the United States government
