skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Garnet secondary ion mass spectrometry oxygen isotopes reveal crucial roles of pulsed magmatic fluid and its mixing with meteoric water in lode gold genesis
Lode gold deposits, which are currently the world’s major gold supply, have been shown to be generated mostly by phase separation of metamorphic fluids and/or interaction between these fluids and wall rocks. Here we use garnet oxygen isotopes by secondary ion mass spectrometry to document the crucial role of magmatic hydrothermal fluids and their mixing with meteoric water in the formation of the world-class Dongping gold deposit in the North China Craton. Garnet grains from quartz veins of various paragenetic stages and the mineralized alteration envelope at Dongping have dynamic δ 18 O variations of 3.8 to −11.0‰, with large intragrain fluctuations up to 5.3‰. These values correspond to calculated δ 18 O values of 6.1 to −9.1‰ for the hydrothermal fluids from which the garnet formed. The isotope data, notably the cyclic alternation in δ 18 O within individual garnet grains, are best interpreted to reflect multiple pulses of magmatically derived fluids and subsequent mixing of each pulse with variable amounts of meteoric water. The results presented here allow us to quantify the significant interplay between magmatic hydrothermal fluids and meteoric water that spanned the entire mineralization history and triggered gold deposition of a lode gold deposit. This study highlights the potential use of in situ oxygen isotope analysis of garnet in tracing the origin and evolution of hydrothermal fluids in the Earth’s crust that may have formed other giant ore deposits.  more » « less
Award ID(s):
2004618
PAR ID:
10397171
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
19
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au–poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au–rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (>500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from δ56Fe values of 0.11 ± 0.07 to 0.16 ± 0.05‰ for Quince and between 0.16 ± 0.03 and 0.42 ± 0.04‰ for Candelaria. Oxygen isotope compositions of magnetite range from δ18O values of 2.65 ± 0.07 to 3.33 ± 0.07‰ for Quince and between 1.16 ± 0.07 and 7.80 ± 0.07‰ for Candelaria. For cogenetic actinolite, δD values range from –41.7 ± 2.10 to –39.0 ± 2.10‰ for Quince and from –93.9 ± 2.10 to –54.0 ± 2.10‰ for Candelaria, and δ18O values range between 5.89 ± 0.23 and 6.02 ± 0.23‰ for Quince and between 7.50 ± 0.23 and 7.69 ± 0.23‰ for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600°–860°C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types. 
    more » « less
  2. null (Ed.)
    Iron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an IOA style mineralization that was overprinted by a younger, structurally-controlled IOCG event that formed the breccia ore body. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude the input from meteoric water and basinal brines. 
    more » « less
  3. null (Ed.)
    Iron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an IOA style mineralization that was overprinted by a younger, structurally-controlled IOCG event that formed the breccia ore body. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude the input from meteoric water and basinal brines. 
    more » « less
  4. null (Ed.)
    The Plio-Pleistocene El Laco iron oxide-apatite (IOA) orebodies in northern Chile are some of the most enigmatic mineral deposits on Earth, interpreted to have formed as lava flows or by hydrothermal replacement, two radically different processes. Field observations provide some support for both processes, but ultimately fail to explain all observations. Previously proposed genetic models based on observations and study of outcrop samples include (1) magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) melt and (2) metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A more recent investigation of outcrop and drill core samples at El Laco generated data that were used to develop a new genetic model that invokes shallow emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid suspension. This fluid, with rheological properties similar to basaltic lava, would have been mobilized by decompression- induced collapse of the volcanic edifice. In this study, we report oxygen, including 17O, hydrogen, and iron stable isotope ratios in magnetite and bulk iron oxide (magnetite with minor secondary hematite and minor goethite) from five of seven orebodies around the El Laco volcano, excluding San Vicente Bajo and the minor Laquito deposits. Calculated values of δ18O, Δ17O, δD, and δ56Fe fingerprint the source of the ore-forming fluid(s): Δ17Osample = δ17Osample – δ18Osample * 0.5305. Magnetite and bulk iron oxide (magnetite variably altered to goethite and hematite) from Laco Sur, Cristales Grandes, and San Vicente Alto yield δ18O values that range from 4.3 to 4.5‰ (n = 5), 3.0 to 3.9‰ (n = 5), and –8.5 to –0.5‰ (n = 5), respectively. Magnetite samples from Rodados Negros are the least altered samples and were also analyzed for 17O as well as conventional 16O and 18O, yielding calculated δ18O values that range from 2.6 to 3.8‰ (n = 9) and Δ17O values that range from –0.13 to –0.07‰ (n = 5). Bulk iron oxide from Laco Norte yielded δ18O values that range from –10.2 to +4.5‰ (avg = 0.8‰, n = 18). The δ2H values of magnetite and bulk iron oxide from all five orebodies range from –192.8 to –79.9‰ (n = 28); hydrogen is present in fluid inclusions in magnetite and iron oxide, and in minor goethite. Values of δ56Fe for magnetite and bulk iron oxide from all five orebodies range from 0.04 to 0.70‰ (avg = 0.29‰, σ = 0.15‰, n = 26). The iron and oxygen isotope data are consistent with a silicate magma source for iron and oxygen in magnetite from all sampled El Laco orebodies. Oxygen (δ18O Δ +4.4 to –10.2‰) and hydrogen (δ 2H ≃ –79.9 to –192.8‰) stable isotope data for bulk iron oxide samples that contain minor goethite from Laco Norte and San Vicente Alto reveal that magnetite has been variably altered to meteoric values, consistent with goethite in equilibrium with local δ18O and δ2H meteoric values of ≃ –15.4 and –211‰, respectively. The H2O contents of iron oxide samples from Laco Norte and San Vicente Alto systematically increase with increasing abundance of goethite and decreasing values of δ18O and δ2H. The values of δ2H (≃ –88 to –140‰) and δ18O (3.0–4.5‰) for magnetite samples from Cristales Grandes, Laco Sur, and Rodados Negros are consistent with growth of magnetite from a degassing silicate melt and/or a boiling magmatic-hydrothermal fluid; the latter is also consistent with δ18O values for quartz, and salinities and homogenization temperatures for fluid inclusions trapped in apatite and clinopyroxene coeval with magnetite. The sum of the data unequivocally fingerprint a silicate magma as the source of the ore fluids responsible for mineralization at El Laco and are consistent with a model that explains mineralization as the synergistic result of common magmatic and magmatic-hydrothermal processes during the evolution of a caldera-related explosive volcanic system. 
    more » « less
  5. Abstract Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are an important current and future source of precious and critical metals. However, the source and evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis of quartz oxygen isotope ratios that homogenize fine-scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use petrographic and cathodoluminescence (CL) images of such textures and growth zones to guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope analyses (10 µm spot) and spatially correlated fluid inclusion microthermometric measurements on successive quartz bands in contemporary Te-rich and Te-poor adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from –7.1 to +7.7‰ in quartz rims are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (–2.2 to +1.6‰) were detected in quartz associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre- and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric water-dominated flow systems are critical to the formation of Te-rich adularia-sericite epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag deposits show little or no oxygen isotope or fluid-inclusion evidence for inputs of magmatic fluid. 
    more » « less