skip to main content


Title: Quantifying rupture characteristics of microearthquakes in the Parkfield Area using a high-resolution borehole network
SUMMARY

It is well known that large earthquakes often exhibit significant rupture complexity such as well separated subevents. With improved recording and data processing techniques, small earthquakes have been found to exhibit rupture complexity as well. Studying these small earthquakes offers the opportunity to better understand the possible causes of rupture complexities. Specifically, if they are random or are related to fault properties. We examine microearthquakes (M < 3) in the Parkfield, California, area that are recorded by a high-resolution borehole network. We quantify earthquake complexity by the deviation of source time functions and source spectra from simple circular (omega-square) source models. We establish thresholds to declare complexity, and find that it can be detected in earthquakes larger than magnitude 2, with the best resolution above M2.5. Comparison between the two approaches reveals good agreement (>90 per cent), implying both methods are characterizing the same source complexity. For the two methods, 60–80 per cent (M 2.6–3) of the resolved events are complex depending on the method. The complex events we observe tend to cluster in areas of previously identified structural complexity; a larger fraction of the earthquakes exhibit complexity in the days following the Mw 6 2004 Parkfield earthquake. Ignoring the complexity of these small events can introduce artefacts or add uncertainty to stress drop measurements. Focusing only on simple events however could lead to systematic bias, scaling artefacts and the lack of measurements of stress in structurally complex regions.

 
more » « less
Award ID(s):
2328485 2043281
NSF-PAR ID:
10397204
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
3
ISSN:
0956-540X
Page Range / eLocation ID:
p. 1772-1785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We calculate rupture directivity and velocity for earthquakes in three well‐recorded repeating sequences (2001–2016) on the San Andreas Fault at Parkfield usingPwaves from borehole recordings and the empirical Green's function method. The individual events in each sequence all show the same directivity; the largest magnitude sequence (M ~ 2.7, 8 events) ruptures unilaterally NW (at ~0.8Vs), the second sequence (M ~ 2.3, 9 events) ruptures unilaterally SE, and the smallest magnitude sequence (M ~ 2, 11 events) is less well resolved. The highly repetitive rupture suggests that geometry or material properties might control nucleation of small locked patches. The source spectra of theM ~ 2.7 sequence exhibit no detectable temporal variation. The smallerMsequences both exhibit a decrease in high‐frequency energy following theM6 earthquake that recovers with time. This could indicate a decrease in stress drop, an increase in attenuation, or a combination of the two, followed by gradual healing.

     
    more » « less
  2. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture. 
    more » « less
  3. Abstract

    Earthquake stress drop is an important source parameter that directly links to strong ground motion and fundamental questions in earthquake physics. Stress drop estimations may contain significant uncertainties due to such factors as variations in material properties and data limitations, which limit the applications of stress drop interpretations. Using a high‐resolution borehole network, we estimate stress drop for 4551 (M0‐4) earthquakes on the San Andreas Fault at Parkfield, California, between 2001 and 2016 using spectral decomposition and an improved stacking method. To evaluate the influence of spatiotemporal variations of material properties on stress drop estimations, we apply different strategies to account for spatial variations of velocity and attenuation changes, and divide earthquakes into three separate time periods to correct temporal variations of attenuation. These results show that appropriate corrections can significantly reduce the scatter in stress drop estimates, and decrease apparent depth and magnitude dependence. We find that insufficient bandwidth can cause systematic underestimation of stress drop estimates and increased scatter. The stress drop measurements from the high‐frequency borehole recordings exhibit complex stable spatial patterns with no clear correlation with the nature of fault slip, or the slip distribution of the 2004 M6 earthquake. Temporal variations are significantly smaller, less well resolved and varying spatially. They do not affect the long‐term stress drop spatial variations, suggesting local material properties may control the spatial heterogeneity of stress drop.

     
    more » « less
  4. Abstract

    Small repeating earthquakes are thought to represent rupture of isolated asperities loaded by surrounding creep. The observed scaling between recurrence interval and seismic moment,TrM1/6, contrasts with expectation assuming constant stress drop and no aseismic slip (TrM1/3). Here we demonstrate that simple crack models of velocity‐weakening asperities in a velocity‐strengthening fault predict theM1/6scaling; however, the mechanism depends on asperity radius,R. For small asperities (, whereis the nucleation radius) numerical simulations with rate‐state friction show interseismic creep penetrating inward from the edge, and earthquakes nucleate in the center and rupture the entire asperity. Creep penetration accounts for ∼25% of the slip budget, the nucleation phase takes up a larger fraction of slip. Stress drop increases with increasingR; the lack of self‐similarity being due to the finite nucleation dimension. Forsimulations exhibit simple cycles with ruptures nucleating from the edge. Asperities withexhibit complex cycles of partial and full ruptures. HereTris explained by an energy criterion: full rupture requires that the energy release rate everywhere on the asperity at least equals the fracture energy, leading to the scalingTrM1/6. Remarkably, in spite of the variability in behavior with source dimension, the scaling ofTrwith stress drop Δτ, nucleation length and creep ratevplis the same across all regimes:. This supports the use of repeating earthquakes as creepmeters and provides a physical interpretation for the scaling observed in nature.

     
    more » « less
  5. SUMMARY InSAR displacement time-series are emerging as a valuable product to study a number of Earth processes. One challenge to current time-series processing methods, however, is that when large earthquakes occur, they can leave sharp coseismic steps in the time-series. These discontinuities can cause current atmospheric correction and noise smoothing algorithms to break down, as these algorithms commonly assume that deformation is steady through time. Here, we aim to remedy this by exploring two methods for correcting earthquake offsets in InSAR time-series: a simple difference offset estimate (SDOE) process and a multiparameter offset estimate (MPOE) parametric time-series inversion technique. We apply these methods to a 2-yr time-series of Sentinel-1 interferograms spanning the 2019 Ridgecrest, CA earthquake sequence. Descending track results indicate that the SDOE method precisely corrects for only 20 per cent of the coseismic offsets at 62 study locations included in our scene and only partially corrects or sometimes overcorrects for the rest of our study sites. On the other hand, the MPOE estimate method successfully corrects the coseismic offset for the majority of sites in our analysis. This MPOE method allows us to produce InSAR time-series and data-derived estimates of deformation during each phase of the earthquake cycle. In order to better isolate and estimate the signal of post-seismic lithospheric deformation in the InSAR time-series, we apply a GNSS-based correction to our interferograms. This correction ties the interferograms to median-filtered weekly GNSS displacements and removes additional atmospheric artefacts. We present InSAR-based estimates of post-seismic deformation for the area around the Ridgecrest rupture, as well as a 2-yr coseismic-corrected, GNSS-corrected InSAR time-series data set. This GNSS-corrected InSAR time-series will enable future modelling of post-seismic processes such as afterslip in the near field of the rupture, poroelastic deformation at intermediate distances and viscoelastic deformation at longer timescales in the far field. 
    more » « less