skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing Earthquake Nucleation Length Scale with Pawnee Aftershocks
Abstract The interpretation of precursory seismicity can depend on a critical nucleation length scale h*, yet h* is largely unconstrained in the seismogenic crust. To estimate h* and associated earthquake nucleation processes at 2–7 km depths in Oklahoma, we studied seismic activity occurring prior to nine M 2.5–3.0 earthquakes that are aftershocks of the 3 September 2016 M 5.8 Pawnee, Oklahoma, earthquake. Four of the nine M 2.5–3.0 aftershocks studied did not have detectable seismicity within a 2 km radius of their hypocenters in the preceding 16 hr time windows. For the other five events, which did exhibit foreshock sequences, we estimated the static stress changes associated with each event of each sequence based on precise earthquake relocations and magnitude estimates. By carefully examining the spatiotemporal characteristics, we found all five of these M 2.5–3.0 aftershocks, and 70% of our studied events were plausibly triggered via static stress transfer from nearby earthquakes occurring hours to seconds earlier, consistent with the cascade nucleation model and a small h* in this region. The smallest earthquakes we could quantitatively study were M −1.5 events, which likely have 1–2 m rupture dimensions. The existence of these small events also supports a small nucleation length scale h*≤1  m, consistent with laboratory estimates. However, our observations cannot rule out more complicated earthquake initiation processes involving interactions between foreshocks and slow slip. Questions also remain as to whether aftershocks initiate differently from more isolated earthquakes.  more » « less
Award ID(s):
1847139 1645163
PAR ID:
10398085
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
93
Issue:
4
ISSN:
0895-0695
Page Range / eLocation ID:
2147 to 2160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Foreshocks are the most obvious signature of the earthquake nucleation stage and could, in principle, forewarn of an impending earthquake. However, foreshocks are only sometimes observed, and we have a limited understanding of the physics that controls their occurrence. In this work, we use high-resolution earthquake catalogs and estimates of source properties to understand the spatiotemporal evolution of a sequence of 11 foreshocks that occurred ~ 6.5 hours before the 2020 Mw 4.8 Mentone earthquake in west Texas.  Elevated pore-pressure and poroelastic stressing from subsurface fluid injection from oil-gas operations is often invoked to explain seismicity in west Texas and the surrounding region. However, here we show that static stresses induced from the initial ML 4.0 foreshock significantly perturbed the local shear stress along the fault and could have triggered the Mentone mainshock. The majority (9/11) of the earthquakes leading up to the Mentone mainshock nucleated in areas where the static shear stresses were increased from the initial ML 4.0 foreshock. The spatiotemporal properties of the 11 earthquakes that preceded the mainshock cannot easily be explained in the context of a preslip or cascade nucleation model. We show that at least 6/11 events are better classified as aftershocks of the initial ML 4.0.  Together, our results suggest that a combination of physical mechanisms contributed to the occurrence of the 11 earthquakes that preceded the mainshock, including static-stressing from earthquake-earthquake interactions, aseismic creep, and stress perturbations induced from fluid injection.  Our work highlights the role of earthquake-earthquake triggering in induced earthquake sequences, and suggests that such triggering could help sustain seismic activity following initial stressing perturbations from fluid injection. 
    more » « less
  2. Abstract In areas of induced seismicity, earthquakes can be triggered by stress changes due to fluid injection and static deformation from fault slip. Here we present a method to distinguish between injection‐driven and earthquake‐driven triggering of induced seismicity by combining a calibrated, fully coupled, poroelastic stress model of wastewater injection with interpretation of a machine learning algorithm trained on both earthquake catalog and modeled stress features. We investigate seismicity from Paradox Valley, Colorado as an ideal test case: a single, high‐pressure injector that has induced thousands of earthquakes since 1991. Using feature importance analysis, we find that injection‐driven earthquakes are approximately 225% of the total catalog but act as background events that can trigger subsequent aftershocks. Injection‐driven events also have distinct spatiotemporal clustering properties with a larger b‐value, closer proximity to the well, and earlier occurrence in the injection history. Generalization of our technique can help characterize triggering processes in other regions where induced seismicity occurs. 
    more » « less
  3. Megathrust earthquakes release and transfer stress that has accumulated over hundreds of years, leading to large aftershocks that can be highly destructive. Understanding the spatiotemporal pattern of megathrust aftershocks is key to mitigating the seismic hazard. However, conflicting observations show aftershocks concentrated either along the rupture surface itself, along its periphery or well beyond it, and they can persist for a few years to decades. Here we present aftershock data following the four largest megathrust earthquakes since 1960, focusing on the change in seismicity rate following the best-recorded 2011 Tohoku earthquake, which shows an initially high aftershock rate on the rupture surface that quickly shuts down, while a zone up to ten times larger forms a ring of enhanced seismicity around it. We find that the aftershock pattern of Tohoku and the three other megathrusts can be explained by rate and state Coulomb stress transfer. We suggest that the shutdown in seismicity in the rupture zone may persist for centuries, leaving seismicity gaps that can be used to identify prehistoric megathrust events. In contrast, the seismicity of the surrounding area decays over 4-6 decades, increasing the seismic hazard after a megathrust earthquake. 
    more » « less
  4. ABSTRACT Directivity, or the focusing of energy along the direction of an earthquake rupture, is a common property of earthquakes of all sizes and can cause increased hazard due to azimuthally dependent ground-motion amplification. For small earthquakes, the effects of directivity are generally less pronounced due to reduced rupture size, yet the directivity in small events can bias source property estimates and provide important insights into general regional faulting patterns. However, due to observational limitations, directivity is usually only measured and modeled for large events. As such, many studies of small earthquakes either ignore directivity altogether or assume a constant rupture direction for all events in a cluster. In our study, we apply a refined directivity fitting method constrained with two separate methods of source deconvolution to the dataset of aftershocks of the 2019 Ridgecrest earthquakes, which contain a large number of well-recorded small-to-mid sized earthquakes occurring in close proximity to each other. The revealed directivity of 100+ small (M 2.4–5) earthquakes is highly heterogeneous and primarily oblique to and away from the main fault strike, suggesting a complex postseismic stress redistribution. In addition, the energy focusing effect of directivity appears to bias the selection of high-quality data from stations in the direction of rupture, leading to average stress-drop increases of 50% if directivity is not accounted for. 
    more » « less
  5. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture. 
    more » « less