Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST He
- Publication Date:
- NSF-PAR ID:
- 10397223
- Journal Name:
- The Astrophysical Journal
- Volume:
- 944
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 104
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of heliummore »
-
Abstract Redshifted components of chromospheric emission lines in the hard X-ray impulsive phase of solar flares have recently been studied through their 30 s evolution with the high resolution of the Interface Region Imaging Spectrograph. Radiative-hydrodynamic flare models show that these redshifts are generally reproduced by electron-beam-generated chromospheric condensations. The models produce large ambient electron densities, and the pressure broadening of the hydrogen Balmer series should be readily detected in observations. To accurately interpret the upcoming spectral data of flares with the DKIST, we incorporate nonideal, nonadiabatic line-broadening profiles of hydrogen into the RADYN code. These improvements allow time-dependent predictions for the extreme Balmer line wing enhancements in solar flares. We study two chromospheric condensation models, which cover a range of electron-beam fluxes (1 − 5 × 10 11 erg s −1 cm −2 ) and ambient electron densities (1 − 60 × 10 13 cm −3 ) in the flare chromosphere. Both models produce broadening and redshift variations within 10 s of the onset of beam heating. In the chromospheric condensations, there is enhanced spectral broadening due to large optical depths at H α , H β , and H γ , while the much lower optical depth ofmore »
-
Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Ca
ii and IRIS Mgii lines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonicmore » -
Abstract We obtained ultraviolet and optical spectra for nine M dwarfs across a range of rotation periods to determine whether they showed stochastic intrinsic variability distinguishable from flares. The ultraviolet spectra were observed during the Far Ultraviolet M-dwarf Evolution Survey Hubble Space Telescope program using the Space Telescope Imaging Spectrograph. The optical observations were taken from the Apache Point Observatory 3.5 m telescope using the Dual Imaging Spectrograph and from the Gemini South Observatory using the Gemini Multi-Object Spectrograph. We used the optical spectra to measure multiple chromospheric lines: the Balmer series from H
α to H10 and the Caii H and K lines. We find that after excising flares, these lines vary on the order of 1%–20% at minute-cadence over the course of an hour. The absolute amplitude of variability was greater for the faster rotating M dwarfs in our sample. Among the five stars for which we measured the weaker Balmer lines, we note a tentative trend that the fractional amplitude of the variability increases for higher-order Balmer lines. We measured the integrated flux of multiple ultraviolet emission features formed in the transition region: the Nv , Siiv, and Civ resonance line doublets, and the Cii and Heii multiplets. The signal-to-noise ratio of the UV datamore » -
Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in H
α by the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hα and EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photosphericmore »