Abstract Camera traps (CT) have been used to study a wide diversity of wildlife around the world. However, despite their widespread use, standardized protocols are lacking, potentially leading to reduced efficiency and inhibiting study comparisons, generalizability, and repeatability. While there are general guidelines and considerations researchers should be aware of when designing a CT survey, studies have shown the vital importance of selecting sampling schemes and camera settings tailored to specific characteristics of the wildlife system of interest. For many species and regions, optimal sampling protocols have not been thoroughly evaluated, especially in vast open landscapes. We used CT data on barren‐ground caribou (Rangifer tarandus) in the open landscape of arctic Alaska as a case study to evaluate and quantify the influence of camera trigger type (i.e., motion detection vs. time‐lapse) and time‐lapse interval on data generation to inform sampling protocols for future CT research in this system or others like it. Comparing camera trigger types, we found 5 min interval time‐lapse generated seven‐times more images containing caribou compared to motion detection. However, the detection rate of motion detection was over 11‐times greater than time‐lapse resulting in more efficient data collection with respect to camera battery life, data storage, and data processing time. Exploring the effect of time‐lapse interval length, we found detections were highly sensitive to interval length with a 30 min interval producing 33.7% fewer images containing caribou and identifying 22.2% fewer trap days containing caribou compared to a 5 min interval. Our results provide insight into effective CT sampling protocols for open landscapes and highlight the importance of critically evaluating and selecting camera settings that account for characteristics of the study system to ensure adequate data is generated efficiently to address study objectives. 
                        more » 
                        « less   
                    
                            
                            Thumping Cycle Variations of Doublet Pool in Yellowstone National Park, USA
                        
                    
    
            Abstract Doublet Pool is an active hydrothermal feature in Yellowstone National Park, USA. Approximately every half hour, it thumps for about 10 min due to bubbles collapsing at the base of the pool. To understand its thermodynamics and sensitivity to external factors, we performed a recurring multiple‐year passive seismic experiment. By linking recorded hydrothermal tremor with active thumping, we determine the onset and end of thumping, and the duration of silence between each thumping cycle. The silence interval decreased from around 30 min before November 2016 to around 13 min in September 2018. This change followed unusual thermal activity on the surrounding Geyser Hill. On a shorter time scale, wind‐driven evaporative cooling can lengthen the pre‐thumping silence interval. Based on energy conservation, we determine the heating rate and heat needed to initiate thumping to be 3–7 MW and ∼6 GJ, respectively. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10397240
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The El Tatio geothermal field in the Chilean Altiplano contains hydrothermal silica sinter deposits overlaying glacial and volcanic units, providing an opportunity to constrain the timing of deglaciation and volcanic activity in an area with sparse absolute chronologies. We obtained 51 new radiocarbon ages andδ13C values on the organic material trapped in these sinter deposits. Based on the δ13C values, we exclude 29 samples for possible contamination with bacterial mats that incorporate old carbon. We infer that hydrothermal activity initiated ~27 ka ago and has been nearly continuous ever since. The ages of the oldest sinter deposits coincide with ages of moraines that stabilized after the most recent deglaciation. Whereas late Pleistocene sinters are broadly distributed in the field, Holocene deposits are found around active hydrothermal features. Although recent volcanism is absent in the vicinity of El Tatio, persistent hydrothermal discharge implies a long‐lived magmatic heat source.more » « less
- 
            Abstract Steamboat Geyser in Yellowstone National Park is the tallest active geyser on Earth and is believed to have hydrologic connection to Cistern Spring, a hydrothermal pool ∼100 m southwest from the geyser vent. Despite broad scientific interest, rare episodic Steamboat eruptions have made it difficult to study its eruption dynamics and underground plumbing architecture. In response to the recent reactivation of Steamboat, which has produced more than 130 eruptions since March 2018, we deployed a dense seismic nodal array surrounding the enigmatic geyser in the summer of 2019. The array recorded abundant 1–5 Hz hydrothermal tremor originating from phase‐transition events within both Steamboat Geyser and Cistern Spring. To constrain the spatiotemporal distribution of the tremor sources, an interferometric‐based polarization analysis was developed. The observed tremor locations indicate that the conduit beneath Steamboat is vertical and extends down to ∼120 m depth and the plumbing of Cistern includes a shallow vertical conduit connecting with a deep, large, and laterally offset reservoir ∼60 m southeast of the surface pool. No direct connection between Steamboat and Cistern plumbing structures is found. The temporal variation of tremor combined within situtemperature and water depth measurements of Cistern reveals interaction between Steamboat and Cistern throughout the eruption/recharge cycles. The observed delayed responses of Cistern Spring in reaction to Steamboat eruptions and recharge suggest that the two plumbing structures may be connected through a fractured/porous medium instead of a direct open channel, consistent with our inferred plumbing structure.more » « less
- 
            Abstract Despite over a century of study, it is unknown if continental hydrothermal fields support high-temperature subsurface biospheres. Cinder Pool is among the deepest hot springs in Yellowstone and is widely studied due to unique sulfur geochemistry that is attributed to hydrolysis of molten elemental sulfur at ∼18 m depth that promotes several chemical reactions that maintain low sulfide, low oxygen, and a moderate pH of ∼4.0. Following ∼100 years of stability, Cinder Pool underwent extreme visual and chemical change (acidification) in 2018. Here, we show that depth-resolved geochemical and metagenomic-based microbial community analyses pre- (2016) and post-acidification (2020) indicate the changes are likely attributable to feedbacks between geological/geochemical processes, sulfur oxidation by subsurface Sulfolobales Archaea, and the disappearance of molten sulfur at depth. These findings underscore the dynamic and rapid feedback between the geosphere and biosphere in continental hydrothermal fields and suggest subsurface biospheres to be more prevalent in these systems than previously recognized.more » « less
- 
            Abstract In Guaymas Basin, organic-rich hydrothermal sediments produce complex hydrocarbon mixtures including saturated, aromatic and alkylated aromatic compounds. We examined sediments from push cores from Guyamas sites with distinct temperature and geochemistry profiles to gain a better understanding on abiotic and biological hydrocarbon alteration. Here we provide evidence for biodegradation of hopanoids, producing saturated hydrocarbons like drimane and homodrimane as intermediate products. These sesquiterpene by-products are present throughout cooler sediments, but their relative abundance is drastically reduced within hotter hydrothermal sediments, likely due to hydrothermal mobilization. Within the sterane pool we detect a trend toward aromatization of steroidal compounds within hotter sediments. The changes in hopane and sterane biomarker composition at different sites reflect temperature-related differences in geochemical and microbial hydrocarbon alterations. In contrast to traditionally observed microbial biodegradation patterns that may extend over hundreds of meters in subsurface oil reservoirs, Guaymas Basin shows highly compressed changes in surficial sediments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
