Projections for the northeastern U.S. indicate that mean air temperatures will rise and snowfall will become less frequent, causing more frequent soil freezing. To test fungal responses to these combined chronic and extreme soil temperature changes, we conducted a laboratory-based common garden experiment with soil fungi that had been subjected to different combinations of growing season soil warming, winter soil freeze/thaw cycles, and ambient conditions for four years in the field. We found that fungi originating from field plots experiencing a combination of growing season warming and winter freeze/thaw cycles had inherently lower activity of acid phosphatase, but higher cellulase activity, that could not be reversed in the lab. In addition, fungi quickly adjusted their physiology to freeze/thaw cycles in the laboratory, reducing growth rate and potentially reducing their carbon use efficiency. Our findings suggest that less than four years of new soil temperature conditions in the field can lead to physiological shifts by some soil fungi, as well as irreversible loss or acquisition of extracellular enzyme activity traits by other fungi. These findings could explain field observations of shifting soil carbon and nutrient cycling under simulated climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
more »
« less
Soil Fungi Exposed to Warming Temperatures and Shrinking Snowpack in a Northern Hardwood Forest Have Lower Capacity for Growth and Nutrient Cycling
Projections for the northeastern United States indicate that mean air temperatures will rise and snowfall will become less frequent, causing more frequent soil freezing. To test fungal responses to these combined chronic and extreme soil temperature changes, we conducted a laboratory-based common garden experiment with soil fungi that had been subjected to different combinations of growing season soil warming, winter soil freeze/thaw cycles, and ambient conditions for 4 years in the field. We found that fungi originating from field plots experiencing a combination of growing season warming and winter freeze/thaw cycles had inherently lower activity of acid phosphatase, but higher cellulase activity, that could not be reversed in the lab. In addition, fungi quickly adjusted their physiology to freeze/thaw cycles in the laboratory, reducing growth rate, and potentially reducing their carbon use efficiency. Our findings suggest that less than 4 years of new soil temperature conditions in the field can lead to physiological shifts by some soil fungi, as well as irreversible loss or acquisition of extracellular enzyme activity traits by other fungi. These findings could explain field observations of shifting soil carbon and nutrient cycling under simulated climate change.
more »
« less
- Award ID(s):
- 1637685
- PAR ID:
- 10397294
- Date Published:
- Journal Name:
- Frontiers in Forests and Global Change
- Volume:
- 5
- ISSN:
- 2624-893X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Northeastern US temperate forests are currently net carbon (C) sinks and play an important role offsetting anthropogenic C emissions, but projected climatic changes, including increased temperatures and decreased winter snowpack, may influence this C sink over the next century. Past studies show that growing season warming increases forest C storage through greater soil nutrient availability that contributes to greater rates of net photosynthesis, while reduced winter snowpack induces soil freeze/thaw cycles that reduce tree root vitality, nutrient uptake, and forest C storage. The year-round effects of climate change on this C sink are not well understood. We report here decade-long results from the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest, which determines the combined effects of growing season warming and a smaller winter snowpack on C storage in northern temperate forests. We found after a decade of treatments that growing season warming increases cumulative tree stem biomass C by 63%. However, winter soil freeze/thaw cycles offset half of this growing season warming effect. The amount of C stored in stem biomass of trees experiencing both growing season warming plus smaller winter snowpack is only 31% higher than the reference plots, but this difference is not significant. Our results suggest that current Earth system models are likely to overestimate the C sink capacity of northern temperate forests because they do not incorporate the negative impacts of a shrinking snowpack and increased frequency of soil freeze/thaw cycles on C uptake and storage by trees.more » « less
-
Abstract Warmer winters with less snowfall are increasing the frequency of soil freeze–thaw cycles across temperate regions. Soil microbial responses to freeze–thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze–thaw cycles.We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce‐fir forests, then added each of these soil microbial communities to a sterile bulk‐soil in a laboratory microcosm experiment. The inoculated high‐elevation cold and low‐elevation warm microcosms were subjected to diurnal freeze–thaw cycles or constant above‐freezing temperature for 9 days. Then, all microcosms were subjected to a 7‐day above‐freezing recovery period.Overall, we found that the high‐elevation cold community had, relative to the low‐elevation warm community, a smaller reduction in microbial respiration (CO2flux) during freeze–thaw cycles. Further, the high‐elevation cold community, on average, experienced lower freeze–thaw‐induced bacterial mortality than the warm community and may have partly acclimated to freeze–thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze–thaw treatment period and there were no changes in soil extractable carbon or nitrogen.Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze–thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze–thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze–thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid‐ and high‐latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, γ‐aminobutyric acid, valine, leucine, and isoleucine). Treatment‐specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment‐related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.more » « less
-
Foliage was collected in 2015 and 2017 from red maple trees at the Climate Change Across Seasons Experiment (CCASE) as part of the Hubbard Brook Ecosystem Study (HBES). Analyses of foliar metabolites include polyamines, amino acids, chlorophylls, carotenoids, soluble proteins, soluble inorganic elements, sugars, and total nitrogen and carbon. There are six (11 x 14m) plots in total in this study; two control (plots 1 and 2), two warmed 5 degrees (°) Celsius (C) above ambient throughout the growing season (plots 3 and 4), and two warmed 5 °C in the growing season, with snow removal during the winter to induce soil freezing and then warmed with buried heating cables to create a subsequent thaw (plots 5 and 6). Each soil freeze/thaw cycle includes 72 hours of soil freezing followed by 72 hours of thaw. Four kilometers (km) of heating cable are buried in the soil to warm these four plots. Together, these treatments led to warmer growing season soil temperatures and an increased frequency of soil freeze-thaw cycles (FTCs) in winter. Our goal was to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple trees. These data were gathered as a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

