skip to main content


Title: Fracture Intensity Impacts on Reaction Front Propagation and Mineral Weathering in Three‐Dimensional Fractured Media
Abstract

Studying reaction front propagation in heterogeneous natural settings is challenging, but numerical simulations can provide insight into the varying spatial and temporal scales of reaction front propagation. Here, the impact of increasing fracture intensity on mineral dissolution rates, and the extent of reaction front propagation is investigated using reactive transport simulations in upscaled discrete fracture network domains with varied fracture intensity. Domain‐averaged dissolution rates vary less than 0.5 log units regardless of the fracture intensity, but the spatial distribution of reactions is controlled by the location and number of dead‐end fractures and the number of connected flowpaths through the domain. Higher fracture intensities lead to more weathering in the domain because of more available mineral for water‐rock interactions. We find that reaction fronts propagate through the primary flowpaths in the first 10,000 years of the simulation for a 10‐m length domain, then propagate into secondary flowpaths and dead‐end fractures between 10,000 and 100,000 years, and finally into the matrix over timescales of hundreds of thousands of years. The domain‐averaged reaction rates decrease through time corresponding to a transition from dissolution in advection‐dominated, fast‐flowing pathways, to dissolution in transport‐limited zones of disconnected fractures and matrix. Matrix dissolution, or dissolution under transport‐limited conditions, is the dominant process at late times in these simulations. The results of these simulations recreate the observed paradox found in nature where highly fractured hillslopes tend to be more weathered but have slower weathering rates, while hillslopes with fewer fractures, are less weathered but have higher dissolution rates.

 
more » « less
NSF-PAR ID:
10397335
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
2
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meteoric waters move along pathways in the subsurface that differ as a function of lithology because of the effects of chemical and physical weathering. To explore how this affects stream chemistry, we investigated watersheds around an igneous intrusion in the Luquillo Mountains (Puerto Rico). We analyzed streams on 1) unmetamorphosed country rock (volcaniclastic sedimentary strata, VC) surrounding an igneous intrusion, 2) the quartz-diorite intrusion (QD), and 3) the metamorphosed aureole rock (hornfels-facies volcaniclastics, HF). These lithologies differ physically and chemically but weather under the same tropical rain forest conditions. The sedimentary VC lithology is pervasively fractured while the massive QD and HF lithologies are relatively unfractured. However, the QD fractures during weathering to produce spheroidally-weathered corestones surrounded by cm-thick rindlets of increasingly weathered rock. Meteoric waters flow pervasively through the network of already-fractured VC rock and the spheroidally weathered rindlets on the QD, but only access a limited fraction of the HF, explaining why streams draining HF are the most dilute in the mountains. This results in various thicknesses of regolith from thick (VC) to moderate (QD) to thin or nonexistent (HF). The pervasive fractures allow groundwater to flow deeply through the VC and then return to the mainstem river (Río Mameyes) at lower elevations. These “rock waters” drive concentrations of rock-derived solutes (silica, base cations, sulfate, phosphate) higher in the lower reaches of the stream. Water also flows through weathering-induced fractures on the QD at high elevations where rindletted corestones are present in stacks, and this water flux dissolves plagioclase and hornblende and oxidizes biotite. This “QD rock water” is not generated at lower elevations in the Río Icacos watershed, where stacks of corestones are absent, and contributions to stream solutes derive from weathering of feldspar- and hornblende-depleted saprolite. The stream chemistry in the QD-dominated watershed (Río Icacos) thus varies from concentrated QD-rock water at channel heads below steep ridgelines toward more diluted “saprolite water” downstream. These observations emphasize the importance of lithology and fracture patterns in dictating water flowpaths, stream chemistry, and regolith development in headwater catchments. 
    more » « less
  2. Abstract

    To investigate how bedrock transforms to soil, we mapped the topography of the interface demarcating onset of weathering under an east‐west trending shale watershed in the Valley and Ridge province in the USA Using wave equation travel‐time tomography from a seismic array of >4,000 geophones, we obtained a 3D P‐wave velocity (Vp) model that resolves structures ∼20 m below land surface (mbls). The depth of mobile soil and the onset of dissolution of chlorite roughly match Vp = 600 m/s and Vp = 2,700 m/s, respectively. Chlorite dissolution initiates porosity growth in the shale matrix. Depth to the 2,700 m/s contour is greater under the N‐ as compared to S‐facing hillslopes and under sub‐planar as compared to concave‐up land surfaces. Broadly, the geometries of the ‘soil’ and ‘chlorite’ Vp contours are consistent with the calculated potential for shear fracture opening under weak regional compression. However, this calculated fracture potential does not consistently explain observations related to N‐ versus S‐facing aspect nor fracture density observed by borehole televiewer. Apparently, regional compression is only a secondary influence on Vp: the primary driver of P‐wave slowing in the upper layers of this catchment is topographic control of reactive water flowpaths and their integrated effects on weathering. The Vp result is best explained as the long‐term integrated effect of groundwater flow‐induced geochemical weathering of shale in response to climate‐driven patterns of micro‐ and macro‐topography.

     
    more » « less
  3. Abstract

    Chemical erosion is of wide interest due to its influence on topography, nutrient supply to streams and soils, sediment composition, and Earth's climate. While controls on chemical erosion rate have been studied extensively in steady‐state models, few studies have explored the controls on chemical erosion rate during transient responses to external perturbations. Here we develop a numerical model for the coevolution of soil‐mantled topography, soil thickness, and soil mineralogy, and we use it to simulate responses to step changes in rates of rock uplift, soil production, soil transport, and mineral dissolution. These simulations suggest that tectonic and climatic perturbations can generate responses in soil chemical erosion rate that differ in speed, magnitude, and spatial pattern and that climatic and tectonic perturbations may impart distinct signatures on hillslope mass fluxes, soil chemistry, and sediment composition. The response time of chemical erosion rate is dominantly controlled by hillslope length and is secondarily modulated by rates of rock uplift, soil production, transport, and mineral dissolution. This strong dependence on drainage density implies that a landscape's chemical erosion response should depend on the relative efficiencies of river incision and soil transport and thus may be mediated by climatic and biological factors. The simulations further suggest that the timescale of the hillslope response may be long relative to that of river channel profiles, implying that chemical erosion response times may be limited more by the sluggishness of the hillslopes than by the rate of signal propagation through river channel profiles.

     
    more » « less
  4. Abstract

    We present analytical solutions for transport with bimolecular reactions in a single fracture embedded within an infinite rock matrix. The fracture and matrix are initially assumed to contain one aqueous species (B) at a uniform concentration. A second aqueous species (A) is injected into the fracture and reacts with B and an additional immobile species (N) in the rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. We employ a composite similarity variable involving two space variables to derive analytical solutions for all species concentrations and the geometry of reaction fronts in the fracture and matrix. The behavior of the reaction‐diffusion equations in the rock matrix is posed as a Stefan problem. For uniform advection in the fracture, our analytical solutions establish that the reaction fronts propagate as the square root of time in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations. We extend our analytical solutions to nonuniform flows in the fracture by invoking a travel‐time transformation. We present applications of our analytical solutions to in situ chemical oxidation of dense nonaqueous phase liquids in fractured rock, wherein an oxidant (A, e.g., permanganate) is injected through fractures and consumed by bimolecular reactions with dissolved dense nonaqueous phase liquids (B, e.g., trichloroethylene) and natural organic matter (N) in the fracture and rock matrix. Our analytical solutions are also relevant to a broad class of reactive transport problems in fracture‐matrix systems where moving reaction fronts occur.

     
    more » « less
  5. null (Ed.)
    Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge-valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge-valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one-half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing. 
    more » « less