skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Neural Network Analysis with Sum-of-Infeasibilities
Inspired by sum-of-infeasibilities methods in convex optimization, we propose a novel procedure for analyzing verification queries on neural networks with piecewise-linear activation functions. Given a convex relaxation which over-approximates the non-convex activation functions, we encode the violations of activation functions as a cost function and optimize it with respect to the convex relaxation. The cost function, referred to as the Sum-of-Infeasibilities (SoI), is designed so that its minimum is zero and achieved only if all the activation functions are satisfied. We propose a stochastic procedure, DeepSoI, to efficiently minimize the SoI. An extension to a canonical case-analysis-based complete search procedure can be achieved by replacing the convex procedure executed at each search state with DeepSoI. Extending the complete search with DeepSoI achieves multiple simultaneous goals: 1) it guides the search towards a counter-example; 2) it enables more informed branching decisions; and 3) it creates additional opportunities for bound derivation. An extensive evaluation across different benchmarks and solvers demonstrates the benefit of the proposed techniques. In particular, we demonstrate that SoI significantly improves the performance of an existing complete search procedure. Moreover, the SoI-based implementation outperforms other state-of-the-art complete verifiers. We also show that our technique can efficiently improve upon the perturbation bound derived by a recent adversarial attack algorithm.  more » « less
Award ID(s):
1814369
PAR ID:
10397367
Author(s) / Creator(s):
; ; ;
Editor(s):
Fisman, Dana; Rosu, Grigore
Date Published:
Journal Name:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
Volume:
13243
Page Range / eLocation ID:
143-163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an enhanced semidefinite program (SDP) relaxation to enable the tight and efficient verification of neural networks (NNs). The tightness improvement is achieved by introducing a nonlinear constraint to existing SDP relaxations previously proposed for NN verification. The efficiency of the proposal stems from the iterative nature of the proposed algorithm in that it solves the resulting non-convex SDP by recursively solving auxiliary convex layer-based SDP problems. We show formally that the solution generated by our algorithm is tighter than state-of-the-art SDP-based solutions for the problem. We also show that the solution sequence converges to the optimal solution of the non-convex enhanced SDP relaxation. The experimental results on standard benchmarks in the area show that our algorithm achieves the state-of-the-art performance whilst maintaining an acceptable computational cost. 
    more » « less
  2. We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be highly unsatisfactory. In order to address the how to learn challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses --- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be even beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms. 
    more » « less
  3. null (Ed.)
    Abstract We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We develop a variable smoothing algorithm, based on the Moreau envelope with a decreasing sequence of smoothing parameters, and prove a complexity of $${\mathcal {O}}(\epsilon ^{-3})$$ O ( ϵ - 3 ) to achieve an $$\epsilon $$ ϵ -approximate solution. This bound interpolates between the $${\mathcal {O}}(\epsilon ^{-2})$$ O ( ϵ - 2 ) bound for the smooth case and the $${\mathcal {O}}(\epsilon ^{-4})$$ O ( ϵ - 4 ) bound for the subgradient method. Our complexity bound is in line with other works that deal with structured nonsmoothness of weakly convex functions. 
    more » « less
  4. The problem of finding the minimizer of a sum of convex functions is central to the field of distributed optimization. Thus, it is of interest to understand how that minimizer is related to the properties of the individual functions in the sum. In this paper, we provide an upper bound on the region containing the minimizer of the sum of two strongly convex functions. We consider two scenarios with different constraints on the upper bound of the gradients of the functions. In the first scenario, the gradient constraint is imposed on the location of the potential minimizer, while in the second scenario, the gradient constraint is imposed on a given convex set in which the minimizers of two original functions are embedded. We characterize the boundaries of the regions containing the minimizer in both scenarios. 
    more » « less
  5. We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms. 
    more » « less