Gravitational-wave (GW) detections of binary black hole (BH) mergers have begun to sample the cosmic BH mass distribution. The evolution of single stellar cores predicts a gap in the BH mass distribution due to pair-instability supernovae (PISNe). Determining the upper and lower edges of the BH mass gap can be useful for interpreting GW detections of merging BHs. We use
Long-duration gamma-ray bursts (lGRBs) originate in relativistic collimated outflows—jets—that drill their way out of collapsing massive stars. Accurately modeling this process requires realistic stellar profiles for the jets to propagate through and break out of. Most previous studies have used simple power laws or pre-collapse models for massive stars. However, the relevant stellar profile for lGRB models is in fact that of a star after its core has collapsed to form a compact object. To self-consistently compute such a stellar profile, we use the open-source code GR1D to simulate the core-collapse process for a suite of low-metallicity rotating massive stellar progenitors that have undergone chemically homogeneous evolution. Our models span a range of zero-age main-sequence (ZAMS) masses:
- Award ID(s):
- 1815304
- Publication Date:
- NSF-PAR ID:
- 10397623
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 944
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. L38
- ISSN:
- 2041-8205
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract MESA to evolve single, nonrotating, massive helium cores with a metallicity ofZ = 10−5, until they either collapse to form a BH or explode as a PISN, without leaving a compact remnant. We calculate the boundaries of the lower BH mass gap for S-factors in the range S(300 keV) = (77,203) keV b, corresponding to the ±3σ uncertainty in our high-resolution tabulated12C(α ,γ )16O reaction rate probability distribution function. We extensively test temporal and spatial resolutions for resolving the theoretical peak of the BH mass spectrum across the BH mass gap. We explore the convergence with respect to convective mixing and nuclear burning, finding that significant time resolution is needed to achieve convergence. We also test adopting a minimum diffusion coefficient to help lower-resolution models reach convergence. We establish a new lower edge of the upper mass gap asM lower≃M ⊙from the ±3σ uncertainty inmore » -
Abstract We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06
c that carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρ CSM∝R −0.03±0.22up to a break radiusR br≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρ CSM∝R −2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M ☉, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5M ☉yr−1for an adopted wind velocityv w = 1000 km s−1and shock microphysical parametersϵ e = 0.1,ϵ B = 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass lossmore » -
Abstract We compare the core-collapse evolution of a pair of 15.8
M ☉stars with significantly different internal structures, a consequence of the bimodal variability exhibited by massive stars during their late evolutionary stages. The 15.78 and 15.79M ☉progenitors have core masses (masses interior to an entropy of 4k Bbaryon−1) of 1.47 and 1.78M ☉and compactness parametersξ 1.75of 0.302 and 0.604, respectively. The core-collapse simulations are carried out in 2D to nearly 3 s postbounce and show substantial differences in the times of shock revival and explosion energies. The 15.78M ☉model begins exploding promptly at 120 ms postbounce when a strong density decrement at the Si–Si/O shell interface, not present in the 15.79M ☉progenitor, encounters the stalled shock. The 15.79M ☉model takes 100 ms longer to explode but ultimately produces a more powerful explosion. Both the larger mass accretion rate and the more massive core of the 15.79M ☉model during the first 0.8 s postbounce time result in largerν e / luminosities and RMS energies along with a flatter and higher-density heating region. The more-energetic explosion of the 15.79M ☉model resulted in the ejection of twice as much56Ni. Most of the ejecta in both models are moderately proton rich, though counterintuitively the highest electron fraction (Y e = 0.61) ejecta in either modelmore » -
Abstract Feedback from massive stars plays an important role in the formation of star clusters. Whether a very massive star is born early or late in the cluster formation timeline has profound implications for the star cluster formation and assembly processes. We carry out a controlled experiment to characterize the effects of early-forming massive stars on star cluster formation. We use the star formation software suite
Torch , combining self-gravitating magnetohydrodynamics, ray-tracing radiative transfer,N -body dynamics, and stellar feedback, to model four initially identical 104M ⊙giant molecular clouds with a Gaussian density profile peaking at 521.5 cm−3. Using theTorch software suite through theAMUSE framework, we modify three of the models, to ensure that the first star that forms is very massive (50, 70, and 100M ⊙). Early-forming massive stars disrupt the natal gas structure, resulting in fast evacuation of the gas from the star-forming region. The star formation rate is suppressed, reducing the total mass of the stars formed. Our fiducial control model, without an early massive star, has a larger star formation rate and total efficiency by up to a factor of 3, and a higher average star formation efficiency per freefall time by up to a factor of 7. Early-forming massive stars promote the buildupmore » -
Abstract Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness for
m r < 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of Mpc−3yr−1in the luminosity range −16 ≤M r ≤ −11 mag. We find that, in this luminosity range, the LRN rate scales as —significantly steeper than the previously derived scaling ofL −1.4±0.3for lower-luminosity LRNe (M V ≥ −10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe (M r ≤ −13 mag) aremore »