Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26 Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36 Cl and 41 Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙ ), rotating (with initial velocities of 150 and 300 km s −1 ) and nonrotating single stars at solar metallicity ( Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26 Al, 36 Cl, and 41 Ca, and the stable isotopes 19 F and 22 Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19 F and 22 Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26 Al and 41 Ca can be matched with by models with initial masses ≥40 M ⊙ , while 36 Cl is matched only by our most massive models, ≥60 M ⊙ . 60 Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26 Al, 36 Cl, and 41 Ca in the ESS.
more »
« less
Aluminium-26 from Massive Binary Stars. III. Binary Stars up to Core Collapse and Their Impact on the Early Solar System
Abstract Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80M⊙), binary stars at various initial periods and solar metallicity (Z= 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M⊙, while models with initial primary masses ≥35M⊙can also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30M⊙and higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10M⊙primary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10429996
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 110
- Size(s):
- Article No. 110
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Radioactive nuclei are the key to understanding the circumstances of the birth of our Sun because meteoritic analysis has proven that many of them were present at that time. Their origin, however, has been so far elusive. The ERC-CoG-2016 RADIOSTAR project is dedicated to investigating the production of radioactive nuclei by nuclear reactions inside stars, their evolution in the Milky Way Galaxy, and their presence in molecular clouds. So far, we have discovered that: (i) radioactive nuclei produced by slow (107Pd and 182Hf) and rapid (129I and 247Cm) neutron captures originated from stellar sources —asymptotic giant branch (AGB) stars and compact binary mergers, respectively—within the galactic environment that predated the formation of the molecular cloud where the Sun was born; (ii) the time that elapsed from the birth of the cloud to the birth of the Sun was of the order of 107 years, and (iii) the abundances of the very short-lived nuclei 26Al, 36Cl, and 41Ca can be explained by massive star winds in single or binary systems, if these winds directly polluted the early Solar System. Our current and future work, as required to finalise the picture of the origin of radioactive nuclei in the Solar System, involves studying the possible origin of radioactive nuclei in the early Solar System from core-collapse supernovae, investigating the production of 107Pd in massive star winds, modelling the transport and mixing of radioactive nuclei in the galactic and molecular cloud medium, and calculating the galactic chemical evolution of 53Mn and 60Fe and of the p-process isotopes 92Nb and 146Sm.more » « less
-
Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)Metal-poor stars were formed during the early epochs when only massive stars had time to evolve and contribute to the chemical enrichment. Low-mass metal-poor stars survive until the present and provide fossil records of the nucleosynthesis of early massive stars. On the other hand, short-lived radionuclides (SLRs) in the early solar system (ESS) reflect the nucleosynthesis of sources that occurred close to the proto-solar cloud in both space and time. Both the ubiquity of Sr and Ba and the diversity of heavy-element abundance patterns observed in single metal-poor stars suggest that some neutron-capture mechanisms other than the r -process might have operated in early massive stars. Three such mechanisms are discussed: the weak s -process in non-rotating models with initial carbon enhancement, a new s -process induced by rapid rotation in models with normal initial composition, and neutron-capture processes induced by proton ingestion in non-rotating models. In addition, meteoritic data are discussed to constrain the core-collapse supernova (CCSN) that might have triggered the formation of the solar system and provided some of the SLRs in the ESS. If there was a CCSN trigger, the data point to a low-mass CCSN as the most likely candidate. An 11.8 M ⊙ CCSN trigger is discussed. Its nucleosynthesis, the evolution of its remnant, and the interaction of the remnant with the proto-solar cloud appear to satisfy the meteoritic constraints and can account for the abundances of the SLRs 41 Ca, 53 Mn, and 60 Fe in the ESS.more » « less
-
ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars.more » « less
-
Context.Theγprocess in core-collapse supernovae (CCSNe) can produce a number of neutron-deficient stable isotopes heavier than iron (pnuclei). However, current model predictions do not fully reproduce solar abundances, especially for92, 94Mo and96, 98Ru. Aims.We investigate the impact of different explosion energies and parametrizations on the nucleosynthesis ofpnuclei, by studying stellar models with different initial masses and different CCSN explosions. Methods.We compared thep-nucleus yields obtained using a semi-analytical method to simulate the supernova to those obtained using hydrodynamic models. We explored the effect of varying the explosion parameters on thep-nucleus production in two sets of CCSN models with initial masses of 15, 20, and 25M⊙at solar metallicity. We calculated a new set of 24 CCSN models (eight for each stellar progenitor mass) and compared our results with another recently published set of 80 CCSN models that includes a wide range of explosion parameters: explosion energy or initial shock velocity, energy injection time, and mass location of the injection. Results.We find that the totalp-nucleus yields are only marginally affected by the CCSN explosion prescriptions if theγ-process production is already efficient in the stellar progenitors due to a C−O shell merger. In most CCSN explosions from progenitors without a C−O shell merger, theγ-process yields increase with the explosion energy by up to an order of magnitude, depending on the progenitor structure and the CCSN prescriptions. The general trend of thep-nucleus production with the explosion energy is more complicated if we look at the production of singlepnuclei. The lightp-nuclei tend to be the most enhanced with increasing explosion energy. In particular, for the CCSN models where theα-rich freeze-out component is ejected, the yields of the lightestpnuclei (including92, 94Mo and96Ru) increase by up to three orders of magnitude. Conclusions.We provide the first extensive study using different sets of massive stars of the impact of varying CCSN explosion prescriptions on the production ofpnuclei. Unlike previous expectations and recent results in the literature, we find that the average production ofpnuclei tends to increase with the explosion energy. We also confirm that the pre-explosion production ofpnuclei in C−O shell mergers is a robust result, independent of the subsequent explosive nucleosynthesis. More generally, a realistic range of variations in the evolution of stellar progenitors and in the CCSN explosions might boost the CCSN contribution to the galactic chemical evolution ofpnuclei.more » « less