skip to main content


Title: Lagrangian stretching reveals stress topology in viscoelastic flows
Viscoelastic flows are pervasive in a host of natural and industrial processes, where the emergence of nonlinear and time-dependent dynamics regulates flow resistance, energy consumption, and particulate dispersal. Polymeric stress induced by the advection and stretching of suspended polymers feeds back on the underlying fluid flow, which ultimately dictates the dynamics, instability, and transport properties of viscoelastic fluids. However, direct experimental quantification of the stress field is challenging, and a fundamental understanding of how Lagrangian flow structure regulates the distribution of polymeric stress is lacking. In this work, we show that the topology of the polymeric stress field precisely mirrors the Lagrangian stretching field, where the latter depends solely on flow kinematics. We develop a general analytical expression that directly relates the polymeric stress and stretching in weakly viscoelastic fluids for both nonlinear and unsteady flows, which is also extended to special cases characterized by strong kinematics. Furthermore, numerical simulations reveal a clear correlation between the stress and stretching field topologies for unstable viscoelastic flows across a broad range of geometries. Ultimately, our results establish a connection between the Eulerian stress field and the Lagrangian structure of viscoelastic flows. This work provides a simple framework to determine the topology of polymeric stress directly from readily measurable flow field data and lays the foundation for directly linking the polymeric stress to flow transport properties.  more » « less
Award ID(s):
2141349 1701392 1554095 2141404 1700961 1705371
NSF-PAR ID:
10397673
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
5
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Poole, Robert J (Ed.)
    The FENE-P (Finitely-Extensible Nonlinear Elastic) dumbbell constitutive equation is widely used in simulations and stability analyses of free and wall-bounded viscoelastic shear flows due to its relative simplicity and accuracy in predicting macroscopic properties of dilute polymer solutions. The model contains three independent material parameters, which expressed in dimensionless form correspond to a Weissenberg number (Wi), i.e., the ratio of the dumbbell relaxation time scale to a characteristic flow time scale, a finite extensibility parameter (L), corresponding to the ratio of the fully extended dumbbell length to the root mean square end-to-end separation of the polymer chain under equilibrium conditions, and a solvent viscosity ratio. An exact solution for the rheological predictions of the FENE-P model in steady simple shear flow is available [Sureshkumar et al., Phys Fluids (1997)], but the resulting nonlinear and nested set of equations do not readily reveal the key shear-thinning physics that dominates at high Wi as a result of the finite extensibility of the polymer chain. In this note we review a simple way of evaluating the steady material functions characterizing the nonlinear evolution of the polymeric contributions to the shear stress and first normal stress difference as the shear rate increases, provide asymptotic expansions as a function of Wi , and show that it is in fact possible to construct universal master curves for these two material functions as well as the corresponding stress ratio. Steady shear flow experiments on three highly elastic dilute polymer solutions of different finite extensibilities also follow the identified master curves. The governing dimensionless parameter for these master curves is Wi/L and it is only in strong shear flows exceeding Wi/L > 1 that the effects of finite extensibility of the polymer chains dominate the evolution of polymeric stresses in the flow field. We suggest that reporting the magnitude of Wi/L when performing stability analyses or simulating shear-dominated flows with the FENE-P model will help clarify finite extensibility effects. 
    more » « less
  2. null (Ed.)
    We use an online database of a turbulent channel-flow simulation at $Re_\tau =1000$ (Graham et al. J. Turbul. , vol. 17, issue 2, 2016, pp. 181–215) to determine the origin of vorticity in the near-wall buffer layer. Following an experimental study of Sheng et al. ( J. Fluid Mech. , vol. 633, 2009, pp.17–60), we identify typical ‘ejection’ and ‘sweep’ events in the buffer layer by local minima/maxima of the wall stress. In contrast to their conjecture, however, we find that vortex lifting from the wall is not a discrete event requiring $\sim$ 1 viscous time and $\sim$ 10 wall units, but is instead a distributed process over a space–time region at least $1\sim 2$ orders of magnitude larger in extent. To reach this conclusion, we exploit a rigorous mathematical theory of vorticity dynamics for Navier–Stokes solutions, in terms of stochastic Lagrangian flows and stochastic Cauchy invariants, conserved on average backward in time. This theory yields exact expressions for vorticity inside the flow domain in terms of vorticity at the wall, as transported by viscous diffusion and by nonlinear advection, stretching and rotation. We show that Lagrangian chaos observed in the buffer layer can be reconciled with saturated vorticity magnitude by ‘virtual reconnection’: although the Eulerian vorticity field in the viscous sublayer has a single sign of spanwise component, opposite signs of Lagrangian vorticity evolve by rotation and cancel by viscous destruction. Our analysis reveals many unifying features of classical fluids and quantum superfluids. We argue that ‘bundles’ of quantized vortices in superfluid turbulence will also exhibit stochastic Lagrangian dynamics and satisfy stochastic conservation laws resulting from particle relabelling symmetry. 
    more » « less
  3. The transition from laminar to turbulent flow is of great interest since it is one of the most difficult and unsolved problems in fluids engineering. The transition processes are significantly important because the transition has a huge impact on almost all systems that come in contact with a fluid flow by altering the mixing, transport, and drag properties of fluids even in simple pipe and channel flows. Generally, in most transportation systems, the transition to turbulence causes a significant increase in drag force, energy consumption, and, therefore, operating cost. Thus, understanding the underlying mechanisms of the laminar-to-turbulent transition can be a major benefit in many ways, especially economically. There have been substantial previous studies that focused on testing the stability of laminar flow and finding the critical amplitudes of disturbances necessary to trigger the transition in various wall-bounded systems, including circular pipes and square ducts. However, there is still no fundamental theory of transition to predict the onset of turbulence. In this study, we perform direct numerical simulations (DNS) of the transition flows from laminar to turbulence in a channel flow. Specifically, the effects of different magnitudes of perturbations on the onset of turbulence are investigated. The perturbation magnitudes vary from 0.001 (0.1%) to 0.05 (5%) of a typical turbulent velocity field, and the Reynolds number is from 5,000 to 40,000. Most importantly, the transition behavior in this study was found to be in good agreement with other reported studies performed for fluid flow in pipes and ducts. With the DNS results, a finite amplitude stability curve was obtained. The critical magnitude of perturbation required to cause transition was observed to be inversely proportional to the Reynolds number for the magnitude from 0.01 to 0.05. We also investigated the temporal behavior of the transition process, and it was found that the transition time or the time required to begin the transition process is inversely correlated with the Reynolds number only for the magnitude from 0.02 to 0.05, while different temporal behavior occurs for smaller perturbation magnitudes. In addition to the transition time, the transition dynamics were investigated by observing the time series of wall shear stress. At the onset of transition, the shear stress experiences an overshoot, then decreases toward sustained turbulence. As expected, the average values of the wall shear stress in turbulent flow increase with the Reynolds number. The change in the wall shear stress from laminar to overshoot was, of course, found to increase with the Reynolds number. More interestingly was the observed change in wall shear stress from the overshoot to turbulence. The change in magnitude appears to be almost insensitive to the Reynolds number and the perturbation magnitude. Because the change in wall shear stress is directly proportional to the pumping power, these observations could be extremely useful when determining the required pumping power in certain flow conditions. Furthermore, the stability curve and wall shear stress changes can be considered robust features for future applications, and ultimately interpreted as evidence of progress toward solving the unresolved fluids engineering problem. 
    more » « less
  4. Abstract

    It is well known that the mixing of two or more species in flows at low Reynolds numbers cannot be easily achieved since inertial effects are essentially absent and molecular diffusion is slow. To achieve mixing in Newtonian fluids under these circumstances requires innovative new ideas such as the use of external body forces (eg, electromagnetic mixers) or the stretching and folding of fluid elements (eg, chaotic advection). For non‐Newtonian fluids with elasticity, mixing can be achieved by enabling the emergence of elastic instabilities that results in chaotic flows in which mixing is significantly enhanced. In this work, our goal is to demonstrate that clearly identifiable vortical structures (eg, vortex rings) can be generated in a viscoelastic fluid initially at rest by the release of elastic stresses. In turn, these vortex motions promote bulk mixing by transporting fluid elements from one location to another more efficiently than diffusion alone. We demonstrate this first theoretically by using the finitely extensible nonlinear elastic Peterlin (FENE‐P) model to show that elastic forces can generate torque. Using this model, we derive an expression for the time rate of change of vorticity in an elastic fluid initially at rest caused by a sudden release of stored elastic stress. This process can be thought of as the release of elastic energy from a stretched rubber band that is suddenly cut at its center. We confirm this ansatz by performing a series of direct numerical simulations based on an in‐house pseudo‐spectral code that couples the FENE‐P model to the equations of motion for an incompressible fluid. The simulations reveal that a pair of vortex rings traveling in opposite directions, with Reynolds numbers on the order of one, is generated from the sudden release of elastic stresses. Secondary vortical structures are also generated. In the concluding section of this work, we address the potential for vortex motions generated by elastic stresses to promote mixing in microflows, and we describe a possible experiment that may demonstrate this effect.

     
    more » « less
  5. Complex and active fluids find broad applications in flows through porous materials. Nontrivial rheology can couple to porous microstructure leading to surprising flow patterns and associated transport properties in geophysical, biological, and industrial systems. Viscoelastic instabilities are highly sensitive to pore geometry and can give rise to chaotic velocity fluctuations. A number of recent studies have begun to untangle how the pore-scale geometry influences the sample-scale flow topology and the resulting dispersive transport properties of these complex systems. Beyond classical rheological properties, active colloids and swimming cells exhibit a range of unique properties, including reduced effective viscosity, collective motion, and random walks, that present novel challenges to understanding their mechanics and transport in porous media flows. This review article aims to provide a brief overview of essential, fundamental concepts followed by an in-depth summary of recent developments in this rapidly evolving field. The chosen topics are motivated by applications, and new opportunities for discovery are highlighted.

     
    more » « less