skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fetal Protection Policies and Corporate Liability of the US Vinyl Chloride Industry, 1974–1991
In the late 20th century, fetal protection policies barred women from hundreds of thousands of industrial jobs on the pretext that if women became pregnant, their fetuses might be harmed by workplace exposure to toxic chemicals. Beginning in the 1970s, these policies set off a decades-long contest between the chemical industry, government agencies, and the judicial system over how to balance the uncertain reproductive health risks against sex discrimination. This article revives the subject of reproductive health and workplace protections through a historical case study of fetal protection policies at Firestone Plastics, a leader in the postwar vinyl chloride industry. I use formerly secret industry documents to argue that Firestone used scientific uncertainty and gender essentialism to skirt new regulatory pressures and minimize corporate liability. Ultimately, fetal protection policies stymied innovative regulatory efforts to protect all workers—not just women—from reproductive hazards in the workplace. (Am J Public Health. 2022;112(2):271–276. https://doi.org/10.2105/AJPH.2021.306539 )  more » « less
Award ID(s):
1827951
PAR ID:
10397733
Author(s) / Creator(s):
Date Published:
Journal Name:
American Journal of Public Health
Volume:
112
Issue:
2
ISSN:
0090-0036
Page Range / eLocation ID:
271 to 276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The construction industry is known for its masculine culture where workplace discrimination, biases, and harassment exist. While interventions such as greater workplace diversity, equity and inclusion programs, and mentoring initiatives are directed toward fostering career engagement and employee retention, women continue to leave professional positions in the construction industry. Using an ethnographic methodology, the aim of this study was to identify and examine the dynamics involved in the perseverance of professional women working in the construction industry. In-depth interviews were conducted, and a qualitative approach toward gathering data was utilized. Consistent questions were posed to the participants primarily through synchronous communications, and specific construction companies and professional women employees were asked to participate. Results suggest that women in leadership positions who previously experienced harassment had male interventionists, and are now serving as the primary interventionists for younger women in their companies. Further results suggest increased women’s participation is realized by forming multiple supportive organizational structures within the construction workplace culture and enacting zero-tolerance guidelines to curb inappropriate or harassing behavior. These research findings underscore the need for further exploration of novel interventional mechanisms toward greater retention of women in the industry. 
    more » « less
  2. Lacy-Nichols and Williams’ examination of the food industry illustrates how it altered its approach from mostly oppositional to regulation to one of appeasement and co-option. This reflection builds upon this by using a commercial determinants of health (CDoH) lens to understand, expose and counter industry co-option, appeasement and partnership strategies that impact public health. Lessons learned from tobacco reveal how tobacco companies maintained public credibility by recruiting scientists to produce industry biased data, co-opting public health groups, gaining access to policy elites and sitting on important government regulatory bodies. Potential counter solutions to food industry appeasement and co-option include (i) understanding corporate actions of health harming industries, (ii) applying mechanisms to minimize industry engagement, (iii) dissecting industry relationship building, and (iv) exposing the negative effects of public private partnerships (PPPs). Such counter-solutions might help to neutralise harmful industry practices, products and policies which currently threaten to undermine healthy food policies. 
    more » « less
  3. Understandings of environmental governance both assume and challenge the relationship between expert knowledge and corresponding action. We explore this interplay by examining the context of knowledge production pertaining to a contested class of chemicals. Per-and polyfluorinated alkyl substances (PFASs) are widely used industrial compounds containing chemical chains of carbon and fluorine that are persistent, bioaccumulative and toxic. Although industry and regulatory scientists have studied the exposure and toxicity concerns of these compounds for decades, and several contaminated communities have documented health concerns as a result of their high levels of exposure, PFAS use remains ubiquitous in a large range of consumer and industrial products. Despite this significant history of industry knowledge production documenting exposure and toxicity concerns, the regulatory approach to PFASs has been limited. This is largely due to a regulatory framework that privileges industry incentives for rapid market entry and trade secret protection over substantive public health protection, creating areas of unseen science, research that is conducted but never shared outside of institutional boundaries. In particular, the risks of PFASs have been both structurally hidden and unexamined by existing regulatory and industry practice. This reveals the uneven pathways that construct issues of social and scientific concern. 
    more » « less
  4. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so. 
    more » « less
  5. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so. 
    more » « less