Fairness is becoming a rising concern in machine learning. Recent research has discovered that state-of-the-art models are amplifying social bias by making biased prediction towards some population groups (characterized by sensitive features like race or gender). Such unfair prediction among groups renders trust issues and ethical concerns in machine learning, especially for sensitive fields such as employment, criminal justice, and trust score assessment. In this paper, we introduce a new framework to improve machine learning fairness. The goal of our model is to minimize the influence of sensitive feature from the perspectives of both data input and predictive model. To achieve this goal, we reformulate the data input by eliminating the sensitive information and strengthen model fairness by minimizing the marginal contribution of the sensitive feature. We propose to learn the sensitive-irrelevant input via sampling among features and design an adversarial network to minimize the dependence between the reformulated input and the sensitive information. Empirical results validate that our model achieves comparable or better results than related state-of-the-art methods w.r.t. both fairness metrics and prediction performance. 
                        more » 
                        « less   
                    
                            
                            Towards Debiasing DNN Models from Spurious Feature Influence
                        
                    
    
            Recent studies indicate that deep neural networks (DNNs) are prone to show discrimination towards certain demographic groups. We observe that algorithmic discrimination can be explained by the high reliance of the models on fairness sensitive features. Motivated by this observation, we propose to achieve fairness by suppressing the DNN models from capturing the spurious correlation between those fairness sensitive features with the underlying task. Specifically, we firstly train a bias-only teacher model which is explicitly encouraged to maximally employ fairness sensitive features for prediction. The teacher model then counter-teaches a debiased student model so that the interpretation of the student model is orthogonal to the interpretation of the teacher model. The key idea is that since the teacher model relies explicitly on fairness sensitive features for prediction, the orthogonal interpretation loss enforces the student network to reduce its reliance on sensitive features and instead capture more task relevant features for prediction. Experimental analysis indicates that our framework substantially reduces the model's attention on fairness sensitive features. Experimental results on four datasets further validate that our framework has consistently improved the fairness with respect to three group fairness metrics, with a comparable or even better accuracy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1939716
- PAR ID:
- 10397777
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 36
- Issue:
- 9
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 9521 to 9528
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Algorithmic fairness research has mainly focused on adapting learning models to mitigate discrimination based on protected attributes, yet understanding inherent biases in training data remains largely unexplored. Quantifying these biases is crucial for informed data engineering, as data mining and model development often occur separately. We address this by developing an information-theoretic framework to quantify the marginal impacts of dataset features on the discrimination bias of downstream predictors. We postulate a set of desired properties for candidate discrimination measures and derive measures that (partially) satisfy them. Distinct sets of these properties align with distinct fairness criteria like demographic parity or equalized odds, which we show can be in disagreement and not simultaneously satisfied by a single measure. We use the Shapley value to determine individual features’ contributions to overall discrimination, and prove its effectiveness in eliminating redundancy. We validate our measures through a comprehensive empirical study on numerous real-world and synthetic datasets. For synthetic data, we use a parametric linear structural causal model to generate diverse data correlation structures. Our analysis provides empirically validated guidelines for selecting discrimination measures based on data conditions and fairness criteria, establishing a robust framework for quantifying inherent discrimination bias in datamore » « less
- 
            Abstract Model distillation has been a popular method for producing interpretable machine learning. It uses an interpretable “student” model to mimic the predictions made by the black box “teacher” model. However, when the student model is sensitive to the variability of the data sets used for training even when keeping the teacher fixed, the corresponded interpretation is not reliable. Existing strategies stabilize model distillation by checking whether a large enough sample of pseudo-data is generated to reliably reproduce student models, but methods to do so have so far been developed separately for each specific class of student model. In this paper, we develop a generic approach for stable model distillation based on central limit theorem for the estimated fidelity of the student to the teacher. We start with a collection of candidate student models and search for candidates that reasonably agree with the teacher. Then we construct a multiple testing framework to select a sample size such that the consistent student model would be selected under different pseudo samples. We demonstrate the application of our proposed approach on three commonly used intelligible models: decision trees, falling rule lists and symbolic regression. Finally, we conduct simulation experiments on Mammographic Mass and Breast Cancer datasets and illustrate the testing procedure throughout a theoretical analysis with Markov process. The code is publicly available athttps://github.com/yunzhe-zhou/GenericDistillation.more » « less
- 
            null (Ed.)We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples.more » « less
- 
            null (Ed.)A critical concern in data-driven decision making is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the sensitive attributes is essential, while, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals’ sensitive information while also allowing it to learn non-discriminatory predictors. The method relies on the notion of differential privacy and the use of Lagrangian duality to design neural networks that can accommodate fairness constraints while guaranteeing the privacy of sensitive attributes. The paper analyses the tension between accuracy, privacy, and fairness and the experimental evaluation illustrates the benefits of the proposed model on several prediction tasks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    