skip to main content


Title: In-Processing Modeling Techniques for Machine Learning Fairness: A Survey
Machine learning models are becoming pervasive in high-stakes applications. Despite their clear benefits in terms of performance, the models could show discrimination against minority groups and result in fairness issues in a decision-making process, leading to severe negative impacts on the individuals and the society. In recent years, various techniques have been developed to mitigate the unfairness for machine learning models. Among them, in-processing methods have drawn increasing attention from the community, where fairness is directly taken into consideration during model design to induce intrinsically fair models and fundamentally mitigate fairness issues in outputs and representations. In this survey, we review the current progress of in-processing fairness mitigation techniques. Based on where the fairness is achieved in the model, we categorize them into explicit and implicit methods, where the former directly incorporates fairness metrics in training objectives, and the latter focuses on refining latent representation learning. Finally, we conclude the survey with a discussion of the research challenges in this community to motivate future exploration.  more » « less
Award ID(s):
1939716
NSF-PAR ID:
10397780
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Knowledge Discovery from Data
ISSN:
1556-4681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Machine learning models are increasingly being used in important decision-making software such as approving bank loans, recommending criminal sentencing, hiring employees, and so on. It is important to ensure the fairness of these models so that no discrimination is made based on protected attribute (e.g., race, sex, age) while decision making. Algorithms have been developed to measure unfairness and mitigate them to a certain extent. In this paper, we have focused on the empirical evaluation of fairness and mitigations on real-world machine learning models. We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks, and then using a comprehensive set of fairness metrics, evaluated their fairness. Then, we have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance. We have found that some model optimization techniques result in inducing unfairness in the models. On the other hand, although there are some fairness control mechanisms in machine learning libraries, they are not documented. The mitigation algorithm also exhibit common patterns such as mitigation in the post-processing is often costly (in terms of performance) and mitigation in the pre-processing stage is preferred in most cases. We have also presented different trade-off choices of fairness mitigation decisions. Our study suggests future research directions to reduce the gap between theoretical fairness aware algorithms and the software engineering methods to leverage them in practice. 
    more » « less
  2. Machine learning models are increasingly being used in important decision-making software such as approving bank loans, recommending criminal sentencing, hiring employees, and so on. It is important to ensure the fairness of these models so that no discrimination is made between different groups in a protected attribute (e.g., race, sex, age) while decision making. Algorithms have been developed to measure unfairness and mitigate them to a certain extent. In this paper, we have focused on the empirical evaluation of fairness and mitigations on real-world machine learning models. We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks, and then using a comprehensive set of fairness metrics evaluated their fairness. Then, we have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance. We have found that some model optimization techniques result in inducing unfairness in the models. On the other hand, although there are some fairness control mechanisms in machine learning libraries, they are not documented. The mitigation algorithm also exhibit common patterns such as mitigation in the post-processing is often costly (in terms of performance) and mitigation in the pre-processing stage is preferred in most cases. We have also presented different trade-off choices of fairness mitigation decisions. Our study suggests future research directions to reduce the gap between theoretical fairness aware algorithms and the software engineering methods to leverage them in practice. 
    more » « less
  3. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  4. Abstract Background

    The 2021 NIJ recidivism forecasting challenge asks participants to construct predictive models of recidivism while balancing false positive rates across groups of Black and white individuals through a multiplicative fairness score. We investigate the performance of several models for forecasting 1-year recidivism and optimizing the NIJ multiplicative fairness metric.

    Methods

    We consider standard linear and logistic regression, a penalized regression that optimizes a convex surrogate loss (that we show has an analytical solution), two post-processing techniques, linear regression with re-balanced data, a black-box general purpose optimizer applied directly to the NIJ metric and a gradient boosting machine learning approach.

    Results

    For the set of models investigated, we find that a simple heuristic of truncating scores at the decision threshold (thus predicting no recidivism across the data) yields as good or better NIJ fairness scores on held out data compared to other, more sophisticated approaches. We also find that when the cutoff is further away from the base rate of recidivism, as is the case in the competition where the base rate is 0.29 and the cutoff is 0.5, then simply optimizing the mean square error gives nearly optimal NIJ fairness metric solutions.

    Conclusions

    The multiplicative metric in the 2021 NIJ recidivism forecasting competition encourages solutions that simply optimize MSE and/or use truncation, therefore yielding trivial solutions that forecast no one will recidivate.

     
    more » « less
  5. Machine learning (ML) has become increasingly prevalent in various domains. However, ML algorithms sometimes give unfair outcomes and discrimination against certain groups. Thereby, bias occurs when our results produce a decision that is systematically incorrect. At various phases of the ML pipeline, such as data collection, pre-processing, model selection, and evaluation, these biases appear. Bias reduction methods for ML have been suggested using a variety of techniques. By changing the data or the model itself, adding more fairness constraints, or both, these methods try to lessen bias. The best technique relies on the particular context and application because each technique has advantages and disadvantages. Therefore, in this paper, we present a comprehensive survey of bias mitigation techniques in machine learning (ML) with a focus on in-depth exploration of methods, including adversarial training. We examine the diverse types of bias that can afflict ML systems, elucidate current research trends, and address future challenges. Our discussion encompasses a detailed analysis of pre-processing, in-processing, and post-processing methods, including their respective pros and cons. Moreover, we go beyond qualitative assessments by quantifying the strategies for bias reduction and providing empirical evidence and performance metrics. This paper serves as an invaluable resource for researchers, practitioners, and policymakers seeking to navigate the intricate landscape of bias in ML, offering both a profound understanding of the issue and actionable insights for responsible and effective bias mitigation.

     
    more » « less