We investigate the problem of unconstrained combinatorial multi-armed bandits with fullbandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a 1 2 -regret upper bound of O˜(nT 2 3 ) for horizon T and number of arms n. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings.
more »
« less
Randomized Greedy Learning for Non-monotone Stochastic Submodular Maximization Under Full-bandit Feedback
We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a $\frac{1}{2}$-regret upper bound of $\Tilde{\mathcal{O}}(n T^{\frac{2}{3}})$ for horizon $T$ and number of arms $n$. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings.
more »
« less
- Award ID(s):
- 2149617
- PAR ID:
- 10397870
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Journal Name:
- Proceedings of the International Workshop on Artificial Intelligence and Statistics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cussens, James ; Zhang, Kun (Ed.)We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step $t$ is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a $(1-1/e)$-regret upper bound of $\mathcal{O}(n^\frac{1}{3}k^\frac{4}{3}T^\frac{2}{3}\log(T)^\frac{1}{2})$ for a horizon $T$, number of base elements $n$, and cardinality constraint $k$. We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods.more » « less
-
We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a -regret upper bound of for a horizon , number of base elements , and cardinality constraint . We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods.more » « less
-
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / \varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of \cite{buchbinder2019constrained}, that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to \cite{feldman2018less}. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(\frac{\log k + \log (1/\alpha {\varepsilon^2})$ per element.more » « less
-
This paper considers a basic problem at the interface of submodular optimization and online learning. In the online unconstrained submodular maximization problem, there is a universe [n] = {1, 2, . . . , n} and a sequence of T nonnegative (not necessarily monotone) submodular functions arrive over time. The goal is to design a computationally efficient online algorithm, which chooses a subset of [n] at each time step as a function only of the past, such that the accumulated value of the chosen subsets is as close as possible to the maximum total value of a fixed subset in hindsight. Our main result is a polynomial time no-1/2-regret algorithm for this problem, meaning that for every sequence of nonnegative submodular functions, the algorithm’s expected total value is at least 1/2 times that of the best subset in hindsight, up to an error term sublinear in T. The factor of 1/2 cannot be improved upon by any polynomial-time online algorithm when the submodular functions are presented as value oracles.more » « less