skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2149617

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider the problem of online monotone DR-submodular maximization subject to long-term stochastic constraints. Specifically, at each round $$t\in [T]$$, after committing an action $$\bx_t$$, a random reward $$f_t(\bx_t)$$ and an unbiased gradient estimate of the point $$\widetilde{\nabla}f_t(\bx_t)$$ (semi-bandit feedback) are revealed. Meanwhile, a budget of $$g_t(\bx_t)$$, which is linear and stochastic, is consumed of its total allotted budget $$B_T$$. We propose a gradient ascent based algorithm that achieves $$\frac{1}{2}$$-regret of $$\mathcal{O}(\sqrt{T})$$ with $$\mathcal{O}(T^{3/4})$$ constraint violation with high probability. Moreover, when first-order full-information feedback is available, we propose an algorithm that achieves $(1-1/e)$-regret of $$\mathcal{O}(\sqrt{T})$$ with $$\mathcal{O}(T^{3/4})$$ constraint violation. These algorithms significantly improve over the state-of-the-art in terms of query complexity. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. This paper introduces unified projection-free Frank-Wolfe type algorithms for adversarial continuous DR-submodular optimization, spanning scenarios such as full information and (semi-)bandit feedback, monotone and non-monotone functions, different constraints, and types of stochastic queries. For every problem considered in the non-monotone setting, the proposed algorithms are either the first with proven sub-linear $$\alpha$$-regret bounds or have better $$\alpha$$-regret bounds than the state of the art, where $$\alpha$$ is a corresponding approximation bound in the offline setting. In the monotone setting, the proposed approach gives state-of-the-art sub-linear $$\alpha$$-regret bounds among projection-free algorithms in 7 of the 8 considered cases while matching the result of the remaining case. Additionally, this paper addresses semi-bandit and bandit feedback for adversarial DR-submodular optimization, advancing the understanding of this optimization area. 
    more » « less
  3. We propose a novel combinatorial stochastic-greedy bandit (SGB) algorithm for combinatorial multi-armed bandit problems when no extra information other than the joint reward of the selected set of n arms at each time step t in [T] is observed. SGB adopts an optimized stochastic-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms. Unlike existing methods that explore the entire set of unselected base arms during each selection step, our SGB algorithm samples only an optimized proportion of unselected arms and selects actions from this subset. We prove that our algorithm achieves a (1-1/e)-regret bound of O(n^(1/3) k^(2/3) T^(2/3) log(T)^(2/3)) for monotone stochastic submodular rewards, which outperforms the state-of-the-art in terms of the cardinality constraint k. Furthermore, we empirically evaluate the performance of our algorithm in the context of online constrained social influence maximization. Our results demonstrate that our proposed approach consistently outperforms the other algorithms, increasing the performance gap as k grows. 
    more » « less
  4. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    This paper presents a unified approach for maximizing continuous DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the general convex set. We consider settings where the oracle provides access to either the gradient of the function or only the function value, and where the oracle access is either deterministic or stochastic. We determine the number of required oracle accesses in all cases. Our approach gives new/improved results for nine out of the sixteen considered cases, avoids computationally expensive projections in three cases, with the proposed framework matching performance of state-of-the-art approaches in the remaining four cases. Notably, our approach for the stochastic function value-based oracle enables the first regret bounds with bandit feedback for stochastic DR-submodular functions. 
    more » « less
  5. We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a $$\frac{1}{2}$$-regret upper bound of $$\Tilde{\mathcal{O}}(n T^{\frac{2}{3}})$$ for horizon $$T$$ and number of arms $$n$$. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings. 
    more » « less