skip to main content


Title: Electric-Field and Mechanical Vibration-Assisted Atomic Force Microscope-Based Nanopatterning
Abstract Atomic force microscope (AFM)-based nanolithography is a cost-effective nanopatterning technique that can fabricate nanostructures with arbitrary shapes. However, existing AFM-based nanopatterning approaches have limitations in the patterning resolution and efficiency. Minimum feature size and machining performance in the mechanical force-induced nanofabrication process are limited by the radius and sharpness of the AFM tip. Electric-field-assisted atomic force microscope (E-AFM) nanolithography can fabricate nanopatterns with features smaller than the tip radius, but it is very challenging to find the appropriate input parameter window. The tip bias range in E-AFM process is typically very small and varies for each AFM tip due to the variations in tip geometry, tip end diameter, and tip conductive coating thickness. This paper demonstrates a novel electric-field and mechanical vibration-assisted AFM-based nanofabrication approach, which enables high-resolution (sub-10 nm toward sub-5 nm) and high-efficiency nanopatterning processes. The integration of in-plane vibration with the electric field increases the patterning speed, broadens the selectable ranges of applied voltages, and reduces the minimum tip bias required for nanopatterning as compared with E-AFM process, which significantly increases the versatility and capability of AFM-based nanopatterning and effectively avoids the tip damage.  more » « less
Award ID(s):
2006127
NSF-PAR ID:
10397890
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Micro and Nano-Manufacturing
Volume:
10
Issue:
2
ISSN:
2166-0468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased AFM tip with conductive coatings to make patterns with little probe-sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe-sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (~0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5-1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ~16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes. 
    more » « less
  2. Lakhtakia, Akhlesh ; Bukkapatnam, Satish T. (Ed.)
    The atomic force microscope (AFM)-based nanomachining has the potential for highly customized nanofabrication due to its low cost and tunability. However, the low productivity and issues related to the quality assurance for AFM-based nanomachining impede it from large-scale production due to the extensive experimental study for turning process parameters with time-consuming offline characterizations. This work reports an analytic approach to capturing the AE spectral frequency responses from the nanopatterning process using vibration-assisted AFM-based nanomachining. The experimental case study suggests the presented approach allows characterizations of subtle variations on the AE frequency responses during the nanomachining processes (with overall 93% accuracy), which opens up the chance to explain the variations of the nano-dynamics using the senor-based monitoring approach for vibration-assisted AFM-based nanomachining. 
    more » « less
  3. The vibration-assisted atomic force microscope (AFM)-based nanomachining offers a promising opportunity for low-cost nanofabrication with high tunability. However, critical challenges reside in advancing the throughput and the quality assurance of the process due to extensive offline experimental investigations and characterizations, which in turn hinders the wide industry applications of current AFM-based nanomachining process. Hence, it is necessary to create an in-process monitoring for the nanomachining to allow real-time inspection and process characterizations. This paper reports a sensor-based analytic approach to allow real-time estimations of the AFM-based nanomachining process. The temporal-spectral features of collected acoustic emission (AE) sensor signals are applied to predict the depth morphology of nanomachined trenches under different machining conditions. The experimental case study suggests that the most significant frequency domain information from AE sensor can accurately predict (R-squared value around 92%) the nanomachined depth profile. It, therefore, breaks the current limitation of characterization tools at the nanoscale precision level, and opens up an opportunity to allow real-time estimation for quality inspection of vibration-assisted AFM-based nanofabrication process. 
    more » « less
  4. Abstract

    Piezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric barium titanate (BTO) films grown on strontium titanate (STO) substrates by molecular beam epitaxy. The electric field due to the cone of the atomic force microscope tip is demonstrated as the dominant electric field for domain expansion in thin films at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain wall under the applied electric field by the tip in BTO for thin films (less than 40 nm) followed an expanding process given by Merz’s law. The material constants in a fit of the data to Merz’s law for very thin films are reported as about 4.2 KV/cm for the activation field,$$E_{\mathrm{a}}$$Ea, and 0.05 nm/s for the limiting velocity,$$v_{\infty }$$v. These material constants showed a dependence on the level of strain in the films, but no fundamental dependence on thickness.

     
    more » « less
  5. Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy (AFM)-based infrared microscopy that bypasses Abbe's diffraction limit on spatial resolution. The PFIR microscopy utilizes a nanoscopically sharp AFM tip to mechanically detect the tip-enhanced infrared photothermal response of the sample in the time domain. The time-gated mechanical signals of cantilever deflections transduce the infrared absorption of the sample, delivering infrared imaging and spectroscopy capability at sub 10 nm spatial resolution. Both the infrared absorption response and mechanical properties of the sample are obtained in parallel while preserving the surface integrity of the sample. This review describes the constructions of the PFIR microscope and several variations, including multiple-pulse excitation, total internal reflection geometry, dual-color configuration, liquid-phase operations, and integrations with simultaneous surface potential measurement. Representative applications of PFIR microscopy are also included in this review. In the outlook section, we lay out several future directions of innovations in PFIR microscopy and applications in chemical and material research. 
    more » « less