In this article, we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses four instances of a linkable sampling module to increase the entropy per sample and improve throughput. The new variant improvesmore »
This content will become publicly available on March 31, 2024
Voltage Sensor Implementations for Remote Power Attacks on FPGAs
This article presents a study of two types of on-chip FPGA voltage sensors based on ring oscillators (ROs) and time-to-digital converter (TDCs), respectively. It has previously been shown that these sensors are often used to extract side-channel information from FPGAs without physical access. The performance of the sensors is evaluated in the presence of circuits that deliberately waste power, resulting in localized voltage drops. The effects of FPGA power supply features and sensor sensitivity in detecting voltage drops in an FPGA power distribution network (PDN) are evaluated for Xilinx Artix-7, Zynq 7000, and Zynq UltraScale+ FPGAs. We show that both sensor types are able to detect supply voltage drops, and that their measurements are consistent with each other. Our findings show that TDC-based sensors are more sensitive and can detect voltage drops that are shorter in duration, while RO sensors are easier to implement because calibration is not required. Furthermore, we present a new time-interleaved TDC design that sweeps the sensor phase. The new sensor generates data that can reconstruct voltage transients on the order of tens of picoseconds.
- Publication Date:
- NSF-PAR ID:
- 10397910
- Journal Name:
- ACM Transactions on Reconfigurable Technology and Systems
- Volume:
- 16
- Issue:
- 1
- Page Range or eLocation-ID:
- 1 to 21
- ISSN:
- 1936-7406
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Architectural details of machine learning models are crucial pieces of intellectual property in many applications. Revealing the structure or types of layers in a model can result in a leak of confidential or proprietary information. This issue becomes especially concerning when the machine learning models are executed on accelerators in multi-tenant FPGAs where attackers can easily co-locate sensing circuitry next to the victim's machine learning accelerator. To evaluate such threats, we present the first remote power attack that can extract details of machine learning models executed on an off-the-shelf domain-specific instruction set architecture (ISA) based neural network accelerator implemented in an FPGA. By leveraging a time-to-digital converter (TDC), an attacker can deduce the composition of instruction groups executing on the victim accelerator, and recover parameters of General Matrix Multiplication (GEMM) instructions within a group, all without requiring physical access to the FPGA. With this information, an attacker can then reverse-engineer the structure and layers of machine learning models executing on the accelerator, leading to potential theft of proprietary information.
-
Recent research has exposed a number of security issues related to the use of FPGAs in embedded system and cloud computing environments. Circuits that deliberately waste power can be carefully crafted by a malicious cloud FPGA user and deployed to cause denial-of-service and fault injection attacks. The main defense strategy used by FPGA cloud services involves checking user-submitted designs for circuit structures that are known to aggressively consume power. Unfortunately, this approach is limited by an attacker’s ability to conceive new designs that defeat existing checkers. In this work, our contributions are twofold. We evaluate a variety of circuit power wasting techniques that typically are not flagged by design rule checks imposed by FPGA cloud computing vendors. The efficiencies of five power wasting circuits, including our new design, are evaluated in terms of power consumed per logic resource. We then show that the source of voltage attacks based on power wasters can be identified. Our monitoring approach localizes the attack and suppresses the clock signal for the target region within 21 μs, which is fast enough to stop an attack before it causes a board reset. All experiments are performed using a state-of-the-art Intel Stratix 10 FPGA.
-
In this paper we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based FPGA providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG.
-
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumptionmore »