The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks. 
                        more » 
                        « less   
                    
                            
                            Voltage Sensor Implementations for Remote Power Attacks on FPGAs
                        
                    
    
            This article presents a study of two types of on-chip FPGA voltage sensors based on ring oscillators (ROs) and time-to-digital converter (TDCs), respectively. It has previously been shown that these sensors are often used to extract side-channel information from FPGAs without physical access. The performance of the sensors is evaluated in the presence of circuits that deliberately waste power, resulting in localized voltage drops. The effects of FPGA power supply features and sensor sensitivity in detecting voltage drops in an FPGA power distribution network (PDN) are evaluated for Xilinx Artix-7, Zynq 7000, and Zynq UltraScale+ FPGAs. We show that both sensor types are able to detect supply voltage drops, and that their measurements are consistent with each other. Our findings show that TDC-based sensors are more sensitive and can detect voltage drops that are shorter in duration, while RO sensors are easier to implement because calibration is not required. Furthermore, we present a new time-interleaved TDC design that sweeps the sensor phase. The new sensor generates data that can reconstruct voltage transients on the order of tens of picoseconds. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10397910
- Date Published:
- Journal Name:
- ACM Transactions on Reconfigurable Technology and Systems
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1936-7406
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)In this paper we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based FPGA providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG.more » « less
- 
            In this article, we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses four instances of a linkable sampling module to increase the entropy per sample and improve throughput. The new variant improves throughput by 250% at a modest 17% increase in CLB count.more » « less
- 
            Deming Chen (Ed.)In this paper,we present and evaluate a true random number generator (TRNG) design that is compatible with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source. The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is continuously tuned to compensate for process, voltage, and temperature variations. After describing the design, we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured. TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG. After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses four instances of a linkable sampling module to increase the entropy per sample, and improve throughput. The new variant improves throughput by 250% at a modest 17% increase in CLB count.more » « less
- 
            Field-Programmable Gate Arrays (FPGAs) are ver-satile, reconfigurable integrated circuits that can be used ashardware accelerators to process highly-sensitive data. Leakingthis data and associated cryptographic keys, however, can un-dermine a system’s security. To prevent potentially unintentionalinteractions that could break separation of privilege betweendifferent data center tenants, FPGAs in cloud environments arecurrently dedicated on a per-user basis. Nevertheless, while theFPGAs themselves are not shared among different users, otherparts of the data center infrastructure are. This paper specificallyshows for the first time that powering FPGAs, CPUs, and GPUsthrough the same power supply unit (PSU) can be exploitedin FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covertchannels between independent boards. These covert channelscan operate remotely, without the need for physical access to,or modifications of, the boards. To demonstrate the attacks, thispaper uses a novel combination of “sensing” and “stressing” ringoscillators as receivers on the sink FPGA. Further, ring oscillatorsare used as transmitters on the source FPGA. The transmittingand receiving circuits are used to determine the presence of theleakage on off-the-shelf Xilinx boards containing Artix 7 andKintex 7 FPGA chips. Experiments are conducted with PSUs bytwo vendors, as well as CPUs and GPUs of different generations.Moreover, different sizes and types of ring oscillators are alsotested. In addition, this work discusses potential countermeasuresto mitigate the impact of the cross-board leakage. The results ofthis paper highlight the dangers of shared power supply unitsin local and cloud FPGAs, and therefore a fundamental need tore-think FPGA security for shared infrastructures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    