The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks.
more »
« less
CAPSULe: Cross-FPGA Covert-Channel Attacks through Power Supply Unit Leakage
Field-Programmable Gate Arrays (FPGAs) are ver-satile, reconfigurable integrated circuits that can be used ashardware accelerators to process highly-sensitive data. Leakingthis data and associated cryptographic keys, however, can un-dermine a system’s security. To prevent potentially unintentionalinteractions that could break separation of privilege betweendifferent data center tenants, FPGAs in cloud environments arecurrently dedicated on a per-user basis. Nevertheless, while theFPGAs themselves are not shared among different users, otherparts of the data center infrastructure are. This paper specificallyshows for the first time that powering FPGAs, CPUs, and GPUsthrough the same power supply unit (PSU) can be exploitedin FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covertchannels between independent boards. These covert channelscan operate remotely, without the need for physical access to,or modifications of, the boards. To demonstrate the attacks, thispaper uses a novel combination of “sensing” and “stressing” ringoscillators as receivers on the sink FPGA. Further, ring oscillatorsare used as transmitters on the source FPGA. The transmittingand receiving circuits are used to determine the presence of theleakage on off-the-shelf Xilinx boards containing Artix 7 andKintex 7 FPGA chips. Experiments are conducted with PSUs bytwo vendors, as well as CPUs and GPUs of different generations.Moreover, different sizes and types of ring oscillators are alsotested. In addition, this work discusses potential countermeasuresto mitigate the impact of the cross-board leakage. The results ofthis paper highlight the dangers of shared power supply unitsin local and cloud FPGAs, and therefore a fundamental need tore-think FPGA security for shared infrastructures.
more »
« less
- Award ID(s):
- 1901901
- PAR ID:
- 10167507
- Date Published:
- Journal Name:
- IEEE Symposium on Security and Privacy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cloud and data center applications increasingly leverage FPGAs because of their performance/watt benefits and flexibility advantages over traditional processing cores such as CPUs and GPUs. As the rising demand for hardware acceleration gradually leads to FPGA multi-tenancy in the cloud, there are rising concerns about the security challenges posed by FPGA virtualization. Exposing space-shared FPGAs to multiple cloud tenants may compromise the confidentiality, integrity, and availability of FPGA-accelerated applications. In this work, we present a hardware/software architecture for domain isolation in FPGA-accelerated clouds and data centers with a focus on software-based attacks aiming at unauthorized access and information leakage. Our proposed architecture implements Mandatory Access Control security policies from software down to the hardware accelerators on FPGA. Our experiments demonstrate that the proposed architecture protects against such attacks with minimal area and communication overhead.more » « less
-
With the growing demand for enhanced performance and scalability in cloud applications and systems, data center architectures are evolving to incorporate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. Unlike traditional processing platforms like CPUs and GPUs, FPGAs offer the unique ability for hardware reconfiguration at run-time, enabling improved and tailored performance, flexibility, and acceleration. FPGAs excel at executing large-scale search optimization, acceleration, and signal processing tasks while consuming low power and minimizing latency. Major public cloud providers, such as Amazon, Huawei, Microsoft, Alibaba, and others, have already begun integrating FPGA-based cloud acceleration services into their offerings. Although FPGAs in cloud applications facilitate customized hardware acceleration, they also introduce new security challenges that demand attention. Granting cloud users the capability to reconfigure hardware designs after deployment may create potential vulnerabilities for malicious users, thereby jeopardizing entire cloud platforms. In particular, multi-tenant FPGA services, where a single FPGA is divided spatially among multiple users, are highly vulnerable to such attacks. This paper examines the security concerns associated with multi-tenant cloud FPGAs, provides a comprehensive overview of the related security, privacy and trust issues, and discusses forthcoming challenges in this evolving field of study.more » « less
-
Because FPGAs outperform traditional processing cores like CPUs and GPUs in terms of performance per watt and flexibility, they are being used more and more in cloud and data center applications. There are growing worries about the security risks posed by multi-tenant sharing as the demand for hardware acceleration increases and gradually gives way to FPGA multi-tenancy in the cloud. The confidentiality, integrity, and availability of FPGA-accelerated applications may be compromised if space-shared FPGAs are made available to many cloud tenants. We propose a root of trust-based trusted execution mechanism called TrustToken to prevent harmful software-level attackers from getting unauthorized access and jeopardizing security. With safe key creation and truly random sources, TrustToken creates a security block that serves as the foundation of trust-based IP security. By offering crucial security characteristics, such as secure, isolated execution and trusted user interaction, TrustToken only permits trustworthy connection between the non-trusted third-party IP and the rest of the SoC environment. The suggested approach does this by connecting the third-party IP interface to the TrustToken Controller and running run-time checks on the correctness of the IP authorization(Token) signals. With an emphasis on software-based assaults targeting unauthorized access and information leakage, we offer a noble hardware/software architecture for trusted execution in FPGA-accelerated clouds and data centers.more » « less
-
Cloud computing providers today offer access to a variety of devices, which users can rent and access remotely in a shared setting. Among these devices are SmartSSDs, which are solid-state disks (SSD) augmented with an FPGA, enabling users to instantiate custom circuits within the FPGA, including potentially malicious circuits for power and temperature measurement. Normally, cloud users have no remote access to power and temperature data, but with SmartSSDs they could abuse the FPGA component to instantiate circuits to learn this information. Additionally, custom power waster circuits can be instantiated within the FPGA. This paper shows for the first time that by leveraging ring oscillator sensors and power wasters, numerous covert-channels in FPGA-enabled SmartSSDs could be used to transmit information. This work presents two channels in single-tenant setting (SmartSSD is used by one user at a time) and two channels in multi-tenant setting (FPGA and SSD inside SmartSSD is shared by different users). The presented covert channels can reach close to 100% accuracy. Meanwhile, bandwidth of the channels can be easily scaled by cloud users renting more SmartSSDs as the bandwidth of the covert channels is proportional to number of SmartSSD used.more » « less
An official website of the United States government

