skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Global Building Occupant Behavior Database
Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting.  more » « less
Award ID(s):
1949372
PAR ID:
10398035
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cognitive buildings use data on how occupants respond to the built environment to proactively make occupant-centric adjustments to lighting, temperature, ventilation, and other environmental parameters. However, sensors that unobtrusively and ubiquitously measure occupant responses are lacking. Here we show that Doppler-radar based sensors, which can sense small physiological motions, provide accurate occupancy detection and estimation of vital signs in challenging, realistic circumstances. Occupancy was differentiated from an empty room over 93% of the time in a 3.4 m × 8.5 m conference room with a single sensor in both wall and ceiling-mounted configurations. Occupancy was successfully detected while an occupant was under the table, visibly blocked from the sensor, a scenario where infrared, ultrasound, and video-based occupancy sensors would fail. Heart and respiratory rates were detected in all seats in the conference room with a single ceiling-mounted sensor. The occupancy sensor can be used to control HVAC and lighting with a short, 1–2 min delay and to provide information for space utilization optimization. Heart and respiratory rate sensing could provide additional feedback to future human-building interactive systems that use vital signs to determine how occupant comfort and wellness is changing with time. 
    more » « less
  2. Smart buildings promise to adapt environmental conditions to the needs of occupants based on statistical analytics applied to various monitored data. While sensors for accurate monitoring of building parameters such as temperature, lighting, and air-quality abound, currently available occupancy sensors are limited to sensing of presence only, with limited accuracy. Doppler radar sensors have shown great promise for unobtrusive recognition and monitoring of occupant presence, count, activity, and cardiopulmonary vital signs. With such measures, a smart building can optimize operations not only for the most efficient use of energy and space, but also to create healthy and sustainable environments that support occupant wellness, comfort, and productivity. This paper presents an overview of Doppler radar occupancy sensors for smart building applications. 
    more » « less
  3. Occupant behavior has a significant impact on building systems’ operations and efficiency. As a result, several innovative approaches have been introduced to quantify the dynamics of occupants within indoor environments, such as interactions with different building systems and the impact of various feedback and interventions to reduce the building energy consumption. To achieve this, researchers have highlighted the importance of reducing energy consumption without impacting occupant comfort. As a result, there is an increasing body of research evaluating how different theories of behavior across a variety of disciplines can explain occupant interactions with building systems. Future progress in this area calls for an in-depth understanding of behavioral theories in explaining occupant interactions with different building systems. In this paper, we have used a structured literature review approach to investigate how different psychological, sociological, and economic theories have been applied to explain occupant interactions with heating and cooling (HVAC systems), opening windows and ventilation, lighting and shading, electronic appliances, domestic hot water, as well as energy conservation behaviors. Throughout the paper, we identify the most common theories and methodologies applied within the existing research, general findings related to how occupants interact with different building systems, as well as a number of identified gaps within the literature. Finally, we provide a discussion on directions for future research studies in this area under each building system. 
    more » « less
  4. Buildings consume nearly 40% of global energy and produce similar emissions. Whiletechnological advances address efficiency, occupant behavior causes energy use variations up to 300% between identical buildings. This gap between predicted and actual building performance impacts building design, operations, and grid demand management programs. Through analyses of smart thermostat data from 1,400 single-occupant homes, the researchdemonstrates that occupants respond to 8°F thermostat setpoint changes within a median of 15 minutes, while 2°F changes trigger responses within a median of 30 minutes. This highlights an understudied temporal relationship between thermostat setbacks and response time of occupant behaviors. Models of such behavior dynamics are required to incorporate occupant impacts into building performance simulation. A key contribution of this dissertation is the Thermal Frustration Theory (TFT), which positsthat thermal discomfort driven behaviors are caused by the time-accumulation of discomfort, not simply a temperature deviation threshold or a delay from an initiating event. Using a dataset of 634 thermostats, each with 25+ manual setpoint changes, a comparative analysis of TFT and comfort zone and a delayed response theories demonstrated that personalized TFT models better predict when manual setpoint change occur. This was measured by the area under the curve statistical measure (AUC); all three models perform similarly by a Matthews Correlation Coefficient measure. Higher AUC performance is especially important for modeling occupant behavior in demand response programs where false negatives of rare occupant interactions could adversely affect grid stability. EnergyPlus based simulations were conducted with TFT-derived occupant models, demonstrating the ability to identify parameters of known TFT models from only data observable with smart thermostats, even under the presence of noise from routine overrides. Overall, the dissertation highlights that thermostat interactions are neither static,instantaneous, nor driven solely by the environment. Instead, temporal accumulation of discomfort and routine-based behavior play important roles. The methodology and results offer a pathway towards more accurate modeling of human-building interactions for policy assessment, building design, and demand response programs. 
    more » « less
  5. Human activities in buildings are connected by various transportation measures. For the emerging Smart and Connected Communities (S&CC), it is possible to synergize the energy management of smart buildings with the vehicle operation/travel information available from transportation infrastructure, e.g. the intelligent transportation systems (ITS). Such information enables the prediction of upcoming building occupancy and upcoming charging load of electrified vehicles. This paper presents a predictive energy management strategy for smart community with a distributed model predictive control framework, in which the upcoming building occupancy and charging load are assumed to be predictable to certain extent based on the ITS information. An illustrative example of smart community is used for simulation study based on a Modelica simulation model, in which a chilled-water plant sustains the ventilation and air conditioning of three buildings, and each building is assumed to host a number of charging stations. Simulation study is performed to validate the proposed strategy. 
    more » « less