skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Spectral Measure for Network Robustness: Assessment, Design, and Evolution
A robust system should perform well under random failures or targeted attacks, and networks have been widely used to model the underlying structure of complex systems such as communication, infrastructure, and transportation networks. Hence, network robustness becomes critical to understanding system robustness. In this paper, we propose a spectral measure for network robustness: the second spectral moment m2 of the network. Our results show that a smaller second spectral moment m2 indicates a more robust network. We demonstrate both theoretically and with extensive empirical studies that the second spectral moment can help (1) capture various traditional measures of network robustness; (2) assess the robustness of networks; (3) design networks with controlled robustness; and (4) study how complex networked systems (e.g., power systems) behave under cascading failures.  more » « less
Award ID(s):
2144918
PAR ID:
10398082
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 IEEE International Conference on Knowledge Graph (ICKG)
Page Range / eLocation ID:
97 to 104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mathematical theories and empirical evidence suggest that several complex natural and man-made systems are fragile: as their size increases, arbitrarily small and localized alterations of the system parameters may trigger system-wide failures. Examples are abundant, from perturbation of the population densities leading to extinction of species in ecological networks [1], to structural changes in metabolic networks preventing reactions [2], cascading failures in power networks [3], and the onset of epileptic seizures following alterations of structural connectivity among populations of neurons [4]. While fragility of these systems has long been recognized [5], convincing theories of why natural evolution or technological advance has failed, or avoided, to enhance robustness in complex systems are still lacking. In this paper we propose a mechanistic explanation of this phenomenon. We show that a fundamental tradeoff exists between fragility of a complex network and its controllability degree, that is, the control energy needed to drive the network state to a desirable state. We provide analytical and numerical evidence that easily controllable networks are fragile, suggesting that natural and man-made systems can either be resilient to parameters perturbation or efficient to adapt their state in response to external excitations and controls. 
    more » « less
  2. Complex systems such as smart cities and smart power grids rely heavily on their interdependent components. The failure of a component in one network may lead to the failure of the supported component in another network. Components which support a large number of interdependent components may be more vulnerable to attacks and failures. In this paper, we study the robustness of two interdependent networks under node failures. By modeling each network using a random geometric graph (RGG), we study conditions for the percolation of two interdependent RGGs after in-homogeneous node failures. We derive analytical bounds on the interdependent degree thresholds (k 1 ,k 2 ), such that the interdependent RGGs percolate after removing nodes in G i that support more than k j nodes in G j (∀i, j ∈ {1, 2}, i ≠ j). We verify the bounds using numerical simulation, and show that there is a tradeoff between k 1 and k 2 for maintaining percolation after the failures. 
    more » « less
  3. Early development of Drosophila melanogaster (fruit fly) facilitated by the gap gene network has been shown to be incredibly robust, and the same patterns emerge even when the process is seriously disrupted. We investigate this robustness using a previously developed computational framework called DSGRN (Dynamic Signatures Generated by Regulatory Networks). Our mathematical innovations include the conceptual extension of this established modeling technique to enable modeling of spatially monotone environmental effects, as well as the development of a collection of graph theoretic robustness scores for network models. This allows us to rank order the robustness of network models of cellular systems where each cell contains the same genetic network topology but operates under a parameter regime that changes continuously from cell to cell. We demonstrate the power of this method by comparing the robustness of two previously introduced network models of gap gene expression along the anterior–posterior axis of the fruit fly embryo, both to each other and to a random sample of networks with same number of nodes and edges. We observe that there is a substantial difference in robustness scores between the two models. Our biological insight is that random network topologies are in general capable of reproducing complex patterns of expression, but that using measures of robustness to rank order networks permits a large reduction in hypothesis space for highly conserved systems such as developmental networks. 
    more » « less
  4. Abstract Climate change threatens the resource adequacy of future power systems. Existing research and practice lack frameworks for identifying decarbonization pathways that are robust to climate‐related uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our framework integrates power system planning and resource adequacy models with 100 climate realizations from a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind, solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to significant resource adequacy failures under climate realizations in 2040, but certain pathways experience significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying and planning for an extreme climate realization that drives the largest resource adequacy failures across our pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest increases in investment costs can add significant robustness against climate change in decarbonizing power systems. Our framework can help power system planners adapt to climate change by stress testing future plans to potential climate realizations, and offers a unique bridge between energy system and climate modeling. 
    more » « less
  5. Phasor Measurement Units (PMU), due to their capability for providing highly precise and time-synchronized measurements of synchrophasors, have now become indispensable in wide area monitoring of power-grid systems. Successful and reliable delivery of synchrophasor packets from the PMUs to the Phasor Data Concentrators (PDCs) and beyond, requires a backbone communication network that is robust and resilient to failures. These networks are vulnerable to a range of failures that include cyber-attacks, system or device level outages and link failures. In this paper, we present a framework to evaluate the resilience of a PMU network in the context of link failures. We model the PMU network as a connected graph and link failures as edges being removed from the graph. Our approach, inspired by model checking methods, involves exhaustively checking the reachability of PMU nodes to PDC nodes, for all possible combinations of link failures, given an expected number of links fail simultaneously. Using the IEEE 14-bus system, we illustrate the construction of the graph model and the solution design. Finally, a comparative evaluation on how adding redundant links to the network improves the Power System Observability, is performed on the IEEE 118 bus-system. 
    more » « less