Abstract China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.
more »
« less
Identifying Robust Decarbonization Pathways for the Western U.S. Electric Power System Under Deep Climate Uncertainty
Abstract Climate change threatens the resource adequacy of future power systems. Existing research and practice lack frameworks for identifying decarbonization pathways that are robust to climate‐related uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our framework integrates power system planning and resource adequacy models with 100 climate realizations from a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind, solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to significant resource adequacy failures under climate realizations in 2040, but certain pathways experience significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying and planning for an extreme climate realization that drives the largest resource adequacy failures across our pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest increases in investment costs can add significant robustness against climate change in decarbonizing power systems. Our framework can help power system planners adapt to climate change by stress testing future plans to potential climate realizations, and offers a unique bridge between energy system and climate modeling.
more »
« less
- Award ID(s):
- 2142421
- PAR ID:
- 10596777
- Publisher / Repository:
- Earth's Future
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Power system resource adequacy (RA), or its ability to continually balance energy supply and demand, underpins human and economic health. How meteorology affects RA and RA failures, particularly with increasing penetrations of renewables, is poorly understood. We characterize large-scale circulation patterns that drive RA failures in the Western U.S. at increasing wind and solar penetrations by integrating power system and synoptic meteorology methods. At up to 60% renewable penetration and across analyzed weather years, three high pressure patterns drive nearly all RA failures. The highest pressure anomaly is the dominant driver, accounting for 20-100% of risk hours and 43-100% of cumulative risk at 60% renewable penetration. The three high pressure patterns exhibit positive surface temperature anomalies, mixed surface solar radiation anomalies, and negative wind speed anomalies across our region, which collectively increase demand and decrease supply. Our characterized meteorological drivers align with meteorology during the California 2020 rolling blackouts, indicating continued vulnerability of power systems to these impactful weather patterns as renewables grow.more » « less
-
Exploring sustainable electricity system development pathways in South America’s MERCOSUR sub-regionWe explore sustainable electricity system development pathways in South America’s MERCOSUR sub-region under a range of techno-economic, infrastructural, and policy forces. The MERCOSUR sub-region includes Argentina, Brazil, Chile, Uruguay, and Paraguay, which represent key electricity generation, consumption, and trade dynamics on the continent. We use a power system planning model to co-optimize investment and operations of generation, storage, and transmission facilities out to 2050. Our results show that, under business-as-usual conditions, wind and solar contribute more than half of new generation capacity by 2050, though this requires substantial expansion of natural gas-based capacity. While new hydropower appears to be less cost-competitive, the existing high capacity of hydropower provides critically important flexibility to integrate the wind and solar and to avoid further reliance on more expensive or polluting resources (e.g., natural gas). Over 90% emission cut by 2050 could be facilitated mostly by enhanced integration (predominantly after 2040) of wind, solar, and battery storage with 11%–28% additional cost, whereas enhanced expansion of hydropower reduces the cost of low-carbon transition, suggesting trade-off opportunities between saving costs and environment in selecting the clean energy resources. Achieving high emission reduction goals will also require enhanced sub-regional electricity trade, which could be mostly facilitated by existing interconnection capacities.more » « less
-
Abstract Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.more » « less
-
Many corporations and nations have pledged to reach net-zero emissions within a few decades. Meeting such targets for greenhouse gases, plastics, etc. requires systematic methods to guide investment in technologies and value-chain alternatives, and develop roadmaps. The proposed framework is a multi-period planning model to guide optimal reforms in cradle-to-cradle life-cycle networks across the time horizon. It aims to meet environmental targets while minimizing the total annualized marginal cost of natural resources and the investment cost associated with adoption of novel technologies. This considers the evolution of technology readiness levels as S-curves or continuous time Markov-chains. Integrated Assessment models account for climate change, decarbonization due to energy mix changes, and carbon taxes. Multiple climate change scenarios and shared socioeconomic pathways are used to model the future. In addition to providing roadmaps, the outputs can also be used to identify technologies that will be robust to future scenarios.more » « less
An official website of the United States government

