Outer membrane protein (OMP) biogenesis in gram‐negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat‐shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo‐crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo‐crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full‐length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone‐client interface to tightly bind clients.
- Award ID(s):
- 1828187
- NSF-PAR ID:
- 10398106
- Date Published:
- Journal Name:
- Frontiers in Molecular Biosciences
- Volume:
- 9
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum , the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC , tprD , and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 ( tp0548 ) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum . They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development. IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum , little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC , tprD , and bamA , in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.more » « less
-
Abstract The outer membrane (OM) of Gram-negative bacteria such as
Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation inbamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. Here, we demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, phospholipids (PLs) flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape. -
Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the periplasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uOMP) conformational ensembles using the experimental properties of two well-studied OMPs. The overall sizes and shapes of the unfolded ensembles in the absence of a denaturant were experimentally defined by measuring the sedimentation coefficient as a function of urea concentration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper torsion angles. The final conformational ensembles have polymer properties different from unfolded soluble and intrinsically disordered proteins and reveal inherent differences in the unfolded states that necessitate further investigation. Building these uOMP ensembles advances the understanding of OMP biogenesis and provides essential information for interpreting structures of uOMP-chaperone complexes.more » « less
-
Proteins are constantly undergoing folding and unfolding transitions, with rates that determine their homeostasis in vivo and modulate their biological function. The ability to optimize these rates without affecting overall native stability is hence highly desirable for protein engineering and design. The great challenge is, however, that mutations generally affect folding and unfolding rates with inversely complementary fractions of the net free energy change they inflict on the native state. Here we address this challenge by targeting the folding transition state (FTS) of chymotrypsin inhibitor 2 (CI2), a very slow and stable two‐state folding protein with an FTS known to be refractory to change by mutation. We first discovered that the CI2's FTS is energetically taxed by the desolvation of several, highly conserved, charges that form a buried salt bridge network in the native structure. Based on these findings, we designed a CI2 variant that bears just four mutations and aims to selectively stabilize the FTS. This variant has >250‐fold faster rates in both directions and hence identical native stability, demonstrating the success of our FTS‐centric design strategy. With an optimized FTS, CI2 also becomes 250‐fold more sensitive to proteolytic degradation by its natural substrate chymotrypsin, and completely loses its activity as inhibitor. These results indicate that CI2 has been selected through evolution to have a very unstable FTS in order to attain the kinetic stability needed to effectively function as protease inhibitor. Moreover, the CI2 case showcases that protein (un)folding rates can critically pivot around a few key residues‐interactions, which can strongly modify the general effects of known structural factors such as domain size and fold topology. From a practical standpoint, our results suggest that future efforts should perhaps focus on identifying such critical residues‐interactions in proteins as best strategy to significantly improve our ability to predict and engineer protein (un)folding rates.more » « less