The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with à-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and ki- netic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
more »
« less
This content will become publicly available on March 12, 2026
Conserved lipid-facing basic residues promote the insertion of the porin OmpC into the E. coli outer membrane
ABSTRACT Almost all integral membrane proteins that reside in the outer membrane (OM) of gram-negative bacteria contain a closed amphipathic β sheet (“β barrel”) that serves as a membrane anchor. The membrane integration of β barrel structures is catalyzed by a highly conserved heterooligomer called thebarrelassemblymachine (BAM). Although charged residues that are exposed to the lipid bilayer are infrequently found in outer membrane protein β barrels, the β barrels of OmpC/OmpF-type trimeric porins produced by Enterobacterales contain multiple conserved lipid-facing basic residues located near the extracellular side of the OM. Here, we show that these residues are required for the efficient insertion of theEscherichia coliOmpC protein into the OMin vivo. We found that the mutation of multiple basic residues to glutamine or alanine slowed insertion and reduced insertion efficiency. Furthermore, molecular dynamics simulations provided evidence that the basic residues promote the formation of hydrogen bonds and salt bridges with lipopolysaccharide, a unique glycolipid located exclusively in the outer leaflet of the OM. Taken together, our results support a model in which hydrophilic interactions between OmpC and LPS help to anchor the protein in the OM when the local environment is perturbed by BAM during membrane insertion and suggest a surprising role for membrane lipids in the insertion reaction.IMPORTANCEThe assembly (folding and membrane insertion) of bacterial outer membrane proteins (OMPs) is an essential cellular process that is a potential target for novel antibiotics. A heterooligomer called thebarrelassemblymachine (BAM) plays a major role in catalyzing OMP assembly. Here, we show that a group of highly conserved lipid-facing basic residues inEscherichia coliOmpC, a member of a major family of abundant OMPs known as trimeric porins, is required for the efficient integration of the protein into the outer membrane (OM). Based on our work and previous studies, we propose that the basic residues form interactions with a unique OM lipid (lipopolysaccharide) that promotes the insertion reaction. Our results provide strong evidence that interactions between specific membrane lipids and at least a subset of OMPs are required to supplement the activity of BAM and facilitate the integration of the proteins into the membrane.
more »
« less
- Award ID(s):
- 2310741
- PAR ID:
- 10633563
- Editor(s):
- Trent, M Stephen; Konovalova, Anna
- Publisher / Repository:
- ASM Journals
- Date Published:
- Journal Name:
- mBio
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gasset, Maria (Ed.)Francisella tularensisis an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable.F.tularensisouter membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) ofF.tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a β-barrel domain consistent with alphafold2’s prediction of an eight stranded β-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal β-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal β-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.more » « less
-
ABSTRACT In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum , the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC , tprD , and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 ( tp0548 ) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum . They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development. IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum , little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC , tprD , and bamA , in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.more » « less
-
Type 11 secretion systems (T11SS) are broadly distributed among proteobacteria, with more than 3000 T11SS family outer membrane proteins (OMPs) comprising 10 major sequence similarity network (SSN) clusters. Of these, only 7, all from animal-associated cluster 1, have been experimentally verified as secretins of cargo, including adhesins, hemophores, and metal binding proteins. To identify novel cargo of a more diverse set of T11SS, we identified gene families co-occurring in gene neighborhoods with either cluster 1 or marine microbe-associated cluster 3 T11SS OMP genes. We developed bioinformatic controls to ensure perceived co-occurrences are specific to T11SS, and not general to OMPs. We found that both cluster 1 and cluster 3 T11SS OMPs frequently co-occur with single carbon metabolism and nucleotide synthesis pathways, but that only cluster 1 T11SS OMPs had significant co-occurrence with metal and heme pathways, as well as with mobile genetic islands, potentially indicating diversified function of this cluster. Cluster 1 T11SS co-occurrences included 2556 predicted cargo proteins, unified by the presence of a C-terminal β-barrel domain, which fall into 141 predicted UniRef50 clusters and approximately 10 different architectures: 4 similar to known cargo and 6 uncharacterized types. We experimentally demonstrate T11SS-dependent secretion of an uncharacterized cargo type with homology to Plasmin sensitive protein (Pls). Unexpectedly, genes encoding marine cluster 3 T11SS OMPs only rarely co-occurred with the C-terminal β-barrel domain and instead frequently co-occurred with DUF1194-containing genes. Overall, our results show that with sufficiently large-scale and controlled genomic data, T11SS-dependent cargo proteins can be accurately predicted.more » « less
-
Abstract Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix–turn–helix–turn–helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression inEscherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.more » « less
An official website of the United States government
