Abstract We present a heuristic model to explain the suppression of deep convection in convection‐resolving models (CRMs) with a small number of grid columns, such as those used in super‐parameterized or multi‐scale modeling framework (MMF) general circulation models (GCM) of the atmosphere. Domains with few grid columns require greater instability to sustain convection because they force a large convective fraction, driving strong compensating subsidence warming. Updraft dilution, which is stronger for reduced horizontal grid spacing, enhances this effect. Thus, suppression of deep convection in CRMs with few grid columns can be reduced by increasing grid spacing. Radiative‐convective equilibrium simulations using standalone CRM simulations with the System for Atmospheric Modeling (SAM) and using GCM‐coupled CRM simulations with the Energy Exascale Earth System Model (E3SM)‐MMF confirm the heuristic model results.
more »
« less
Clouds and Radiation in a Mock‐Walker Circulation
Abstract The Walker circulation connects the regions with deep atmospheric convection in the western tropical Pacific to the shallow‐convection, tropospheric subsidence, and stratocumulus cloud decks of the eastern Pacific. The purpose of this study is to better understand the multi‐scale interactions between the Walker circulation, cloud systems, and interactive radiation. To do this we simulate a mock‐Walker Circulation with a full‐physics general circulation model using idealized boundary conditions. Our experiments use a doubly‐periodic domain with grid‐spacing of 1, 2, 25, and 100 km. We thus span the range from General Circulation Models (GCMs) to Cloud‐system Resolving Models (CRMs). Our model is derived from the Geophysical Fluid Dynamics Laboratory atmospheric GCM (AM4.0). We find substantial differences in the mock‐Walker circulation simulated by our GCM‐like and CRM‐like experiments. The CRM‐like experiments have more upper level clouds, stronger overturning circulations, and less precipitation. The GCM‐like experiments have a low‐level cloud fraction that is up to 20% larger. These differences leads to opposite atmospheric responses to changes in the longwave cloud radiative effect (LWCRE). Active LWCRE leads to increased precipitation for our GCMs, but decreased precipitation for our CRMs. The LWCRE leads to a narrower rising branch of the circulation and substantially increases the fraction of precipitation from the large‐scale cloud parameterization. This work demonstrates that a mock‐Walker circulation is a useful generalization of radiative convective equilibrium that includes a large‐scale circulation.
more »
« less
- Award ID(s):
- 1830729
- PAR ID:
- 10398140
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The radiative–convective equilibrium (RCE) model intercomparison project (RCEMIP) leveraged the simplicity of RCE to focus attention on moist convective processes and their interactions with radiation and circulation across a wide range of model types including cloud-resolving models (CRMs), general circulation models (GCMs), single-column models, global cloud-resolving models, and large-eddy simulations. While several robust results emerged across the spectrum of models that participated in the first phase of RCEMIP (RCEMIP-I), two points that stand out are (1) the strikingly large diversity in simulated climate states and (2) the strong imprint of convective self-aggregation on the climate state. However, the lack of consensus in the structure of self-aggregation and its response to warming is a barrier to understanding. Gaining a deeper understanding of convective aggregation and tropical climate will require reducing the degrees of freedom with which convection can vary. Therefore, we propose phase II of RCEMIP (RCEMIP-II) that utilizes a prescribed sinusoidal sea surface temperature (SST) pattern to provide a constraint on the structure of convection and move one critical step up the model hierarchy. This so-called “mock-Walker” configuration generates features that resemble observed tropical circulations. The specification of the mock-Walker protocol for RCEMIP-II is described, along with example results from one CRM and one GCM. RCEMIP-II will consist of five required simulations: three simulations with the same three mean SSTs as in RCEMIP-I but with an SST gradient and two additional simulations at one of the mean SSTs with different values of the SST gradients. We also test the sensitivity to the imposed SST gradient and the domain size. Under weak SST gradients, unforced self-aggregation emerges across the entire domain, similar to what was found in RCEMIP. As the SST gradient increases, the convective region narrows and is more confined to the warmest SSTs. At warmer mean SSTs and stronger SST gradients, low-frequency variability in the convective aggregation emerges, suggesting that simulations of at least 200 d may be needed to achieve robust equilibrium statistics in this configuration. Simulations with different domain sizes generally have similar mean statistics and convective structures, depending on the value of the SST gradient. The prescribed SST boundary condition is the only difference in the set-up between RCEMIP-II and RCEMIP-I, which enables comparison between the two; however, we also welcome participation in RCEMIP-II from models that did not participate in RCEMIP-I.more » « less
-
Abstract Overly smooth topography in general circulation models (GCMs) underestimates the blocking effect of the steep mountain ranges flanking the eastern Pacific. We explore the impact of this bias on common biases in Pacific climate simulation [i.e., the unrealistic cross-equatorial symmetry of near-surface winds, sea surface temperatures (SSTs), and precipitation] through sensitivity experiments with modified Central and/or South American topography in an atmosphere–ocean coupled GCM. Quantifying orographic blocking potential via the Froude number, we determine that an envelope topographic interpolation scheme best captures observed blocking patterns. Implementing envelope topography only in Central America reduced model biases as greater blocking of the trade winds warmed SST and enhanced convergence in the northeastern Pacific. Doing so additionally over the Andes improved the simulation of South Pacific circulation and the South Pacific convergence zone as stronger deflection of the westerlies intensified the South Pacific anticyclone. This mitigated convection biases in the southeast Pacific by increasing subsidence and cooling SST. However, remote impacts of the Andes exacerbated the dry bias in the northeast tropical Pacific, resulting in negligible improvement in the East Pacific double-ITCZ. We find that, due to the significant role of large-scale convergence in driving precipitation patterns, other model biases, such as cloud-radiative biases, may modulate the impact of altering topography. Our results highlight the importance of considering alternate methods for calculating model topographic boundary conditions, though the optimal interpolation scheme will vary with model resolution and the impact of topography on GCM biases can be sensitive to choices made in formulating parameterizations. Significance StatementIn this study, we explore how the mountain ranges spanning Central and South America shape the climate of the Pacific by blocking large-scale midlatitude and tropical winds. We show that the height of these mountains is typically too low in climate models and that elevating them can improve patterns of rainfall, surface ocean temperatures, and near-surface winds in the Pacific. This is important because model biases in the Pacific climate limit their utility for understanding current and future climate variability. Improving the representation of blocking by mountains can thus be a simple method for reducing uncertainties in future climate projections.more » « less
-
Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) consists of simulations at three fixed sea‐surface temperatures (SSTs: 295, 300, and 305 K) and thus allows for a calculation of the climate feedback parameter based on the change of the top‐of‐atmosphere radiation imbalance. Climate feedback parameters range widely across RCEMIP, roughly from−6 to 3 W m−2 K−1, particularly across general‐circulation models (GCMs) as well as global and large‐domain cloud‐resolving models (CRMs). Small‐domain CRMs and large‐eddy simulations have a smaller range of climate feedback parameters due to the absence of convective self‐aggregation. More than 70–80% of the intermodel spread in the climate feedback parameter can be explained by the combined temperature dependencies of convective aggregation and shallow cloud fraction. Low climate sensitivities are associated with an increase of shallow cloud fraction (increasing the planetary albedo) and/or an increase in convective aggregation with warming. An increase in aggregation is associated with an increase in outgoing longwave radiation, caused primarily by mid‐tropospheric drying, and secondarily by an expansion of subsidence regions. Climate sensitivity is neither dependent on the average amount of aggregation nor on changes in deep/anvil cloud fraction. GCMs have a lower overall climate sensitivity than CRMs because in most GCMs convective aggregation increases with warming, whereas in CRMs, convective aggregation shows no consistent temperature trend.more » « less
-
Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.more » « less
An official website of the United States government
