skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspective on functional metal-oxide plasmonic metastructures
Plasmonic nanostructures and metasurfaces are appealing hosts for investigation of novel optical devices and exploration of new frontiers in physical/optical processes and materials research. Recent studies have shown that these structures hold the promise of greater control over the optical and electronic properties of quantum emitters, offering a unique horizon for ultra-fast spin-controlled optical devices, quantum computation, laser systems, and sensitive photodetectors. In this Perspective, we discuss how heterostructures consisting of metal oxides, metallic nanoantennas, and dielectrics can offer a material platform wherein one can use the decay of plasmons and their near fields to passivate the defect sites of semiconductor quantum dots while enhancing their radiative decay rates. Such a platform, called functional metal-oxide plasmonic metasubstrates (FMOPs), relies on formation of two junctions at very close vicinity of each other. These include an Au/Si Schottky junction and an Si/Al oxide charge barrier. Such a double junction allows one to use hot electrons to generate a field-passivation effect, preventing migration of photo-excited electrons from quantum dots to the defect sites. Prospects of FMOP, including impact of enhancement exciton–plasmon coupling, collective transport of excitation energy, and suppression of quantum dot fluorescence blinking, are discussed.  more » « less
Award ID(s):
1917544
PAR ID:
10398204
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
7
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 070901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons. 
    more » « less
  2. It is known that the spontaneous emission of semiconductor quantum dots is mostly unpolarized when they are excited off-resonantly. The complete loss of polarization memory is associated with the ultrafast carrier scattering, leading to complete spin polarization relaxation. We study the application of metal-oxide plasmonic double-junction structures to transfer the excitation polarization memory of quantum dots to their spontaneous emission. These structures consist of arrays of metallic nanoantennas in the presence of heterostructures consisting of Au/Si Schottky junctions and Si/Al-oxide charge barriers. Our results show that by using such double-junction structures, one can control the states of polarization and intensity of the emission of quantum dots using the state of polarization of an off-resonant laser field. For achieving this, we explore the optical control of exciton–plasmon coupling using optical lattice modes caused by the arrays of metallic nanoantennas, and the application of the electrostatic field generated by the hot electrons captured at the Au/Si Schottky junction. 
    more » « less
  3. Abstract Silicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices. 
    more » « less
  4. Over the last century, quantum theories have revolutionized our understanding of material properties. One of the most striking quantum phenomena occurring in heterogeneous media is the quantum tunneling effect, where carriers can tunnel through potential barriers even if the barrier height exceeds the carrier energy. Interestingly, the tunneling process can be accompanied by the absorption or emission of light. In most tunneling junctions made of noble metal electrodes, these optical phenomena are governed by plasmonic modes, i.e., light-driven collective oscillations of surface electrons. In the emission process, plasmon excitation via inelastic tunneling electrons can improve the efficiency of photon generation, resulting in bright nanoscale optical sources. On the other hand, the incident light can affect the tunneling behavior of plasmonic junctions as well, leading to phenomena such as optical rectification and induced photocurrent. Thus, plasmonic tunneling junctions provide a rich platform for investigating light–matter interactions, paving the way for various applications, including nanoscale light sources, sensors, and chemical reactors. In this paper, we will introduce recent research progress and promising applications based on plasmonic tunneling junctions. 
    more » « less
  5. Nanoscale plasmonic gaps are useful structures both electrically, for creating quantum tunnel junctions, and optically, for confining light. Inelastic tunneling of electrons in a tunnel junction is an attractive source of light due to the ultrafast response rate granted by the tunneling time of electrons in the system as well as the compact dimensions. A main hurdle for these light emitting tunnel junctions, however, is their low external efficiency given by both low electron-to-plasmon conversion as well as low plasmon-to-photon conversion. Inversely, coupling light into a nanogap for high confinement and field enhancement can be difficult due to the size mismatches involved. We show a 3 nm gap metal-insulator-metal plasmonic tunnel junction evanescently coupled to the fundamental TE mode of a standard silicon waveguide in a tapered directional coupler configuration with a transmission efficiency of 54.8% atλ =1.55μm and a 3-dB coupling bandwidth of 705 nm. In the inverse configuration, we show an electric field enhancement of |E|/|E0| ≈120 within a plasmonic tunnel junction in the technologically important optical telecommunications band. 
    more » « less