skip to main content


Title: A Long‐Term Earthquake Catalog for the Endeavour Segment: Constraints on the Extensional Cycle and Evidence for Hydrothermal Venting Supported by Propagating Rifts
Abstract

We use ocean bottom seismometer data from the Endeavour segment of the Juan de Fuca ridge to construct a long‐term earthquake catalog for an intermediate spreading rate mid‐ocean ridge. We present >50,000 new earthquake locations for 2016–2021 from the Ocean Networks Canada NEPTUNE cabled observatory and relocate earthquakes from two autonomous networks in 1995 and 2003–2006. The catalog comprises >85,000 earthquakes located using three‐dimensional segment‐scalePandSwave velocity models from a prior tomography experiment. Despite the small footprints of networks near the segment center, locations show good agreement with geologic features at segment ends. The improved locations show that the northern Endeavour segment ruptured southwards from 48.3°N to 48.05°N during two diking events in early 2005, possibly accompanied by diking on the West Valley (WV) propagator. Persistent off‐axis seismicity near the segment center appears to be related to the WV and Cobb propagating rifts which we infer extend ∼10 km closer to the Endeavour segment center than is apparent in bathymetry. We suggest that the proximity of the propagators to the Endeavour vent fields (VFs) contributes to the localization, vigor, and longevity of the fields by focusing permeability through ongoing fracturing and by limiting extrusive magmatism through degassing of the axial magma lens. Increasing rates of seismicity beneath the VFs beginning in late 2018 and a deepening of earthquakes in 2020 indicate that the central portion of the segment may be entering the later stages of the eruptive cycle.

 
more » « less
NSF-PAR ID:
10398408
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
2
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 2014–2015, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed seafloor absolute pressure gauges and ocean bottom seismometers directly above a large slow slip event, allowing examination of the relationship between slow slip and earthquakes in detail. Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip data were combined with nearby existing land stations to create a catalog of microseismicity consisting of 2,300 earthquakes ranging in magnitude between 0.5 and 4.7 that is complete to magnitude 1.5, yielding almost twice as many events as detected by the onshore networks alone. This greatly improves the seismicity catalog for this active subduction zone margin, especially in the offshore portion that was difficult to study using only the inland permanent seismic network. The new locations for the events within the footprint of the offshore network show that earthquakes near the trench are systematically shallower than and NW (landward) of their locations using only land‐based stations. Our results indicate that Hikurangi seismicity is concentrated in two NE‐SW bands, one offshore beneath the outer forearc wedge, one onshore beneath the eastern Raukumara Peninsula, and the majority of earthquakes are within the subducting Pacific plate with a smaller percent at the plate interface. We find a 20‐km wide northeast trending gap in microseismicity between the two bands and beneath the inner forearc wedge and this gap in seismicity borders the downdip edge of a slow slip patch.

     
    more » « less
  2. Abstract Accurate and (near) real-time earthquake monitoring provides the spatial and temporal behaviors of earthquakes for understanding the nature of earthquakes, and also helps in regional seismic hazard assessments and mitigations. Because of the increase in both the quality and quantity of seismic data, an automated earthquake monitoring system is needed. Most of the traditional methods for detecting earthquake signals and picking phases are based on analyses of features in recordings of an individual earthquake and/or their differences from background noises. When seismicity is high, the seismograms are complicated, and, therefore, traditional analysis methods often fail. With the development of machine learning algorithms, earthquake signal detection and seismic phase picking can be more accurate using the features obtained from a large amount of earthquake recordings. We have developed an attention recurrent residual U-Net algorithm, and used data augmentation techniques to improve the accuracy of earthquake detection and seismic phase picking on complex seismograms that record multiple earthquakes. The use of probability functions of P and S arrivals and potential P and S arrival pairs of earthquakes can increase the computational efficiency and accuracy of backprojection for earthquake monitoring in large areas. We applied our workflow to monitor the earthquake activity in southern California during the 2019 Ridgecrest sequence. The distribution of earthquakes determined by our method is consistent with that in the Southern California Earthquake Data Center (SCEDC) catalog. In addition, the number of earthquakes in our catalog is more than three times that of the SCEDC catalog. Our method identifies additional earthquakes that are close in origin times and/or locations, and are not included in the SCEDC catalog. Our algorithm avoids misidentification of seismic phases for earthquake location. In general, our algorithm can provide reliable earthquake monitoring on a large area, even during a high seismicity period. 
    more » « less
  3. SUMMARY

    Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here, we present the first local seismicity catalogue based on event data recorded by a temporary broad-band network of 39 ocean–bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from 2016 to 2017 March. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterized by normal faulting and most of the transform events are characterized by strike-slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600 °C-isotherm from a simple thermal model. The deeper events could be explained by the control of sea water infiltration on the brittle failure limit.

     
    more » « less
  4. Abstract

    The Endeavour segment of the Juan de Fuca Ridge is one of the most active and long‐lived hydrothermal areas of the mid‐ocean ridge system. However, the permeability structure that gives rise to long‐term venting at well‐established fields, such as the High Rise, Main Endeavour, and Mothra fields, is not fully understood. Here we jointly invertPgandSgtraveltimes from a seismic refraction experiment conducted at the Endeavour segment usingP‐to‐Scoupling constraints. We then calculate porosity and crack density as a function of crack aspect ratio by applying the differential effective medium theory to the seismic velocities. At 1.4‐km depth, averageVp~5 km off axis increases by ~0.4 km/s compared to the ridge axis. The averageVp/Vshas a minimum of ~1.75 on the ridge axis and increases to a maximum of ~1.84 off axis. The inferred porosity and crack density distributions show that the proportion of thick versus thin cracks decreases from the ridge axis to the flanks, since theoretical models indicate thatVp/Vsincreases going from thick to thin cracks (aspect ratio decreasing from 0.1 to 0.01). The dominant presence of thick cracks on the axis may provide long‐term conduits for upflow in high‐temperature hydrothermal circulation potentially forming the vent fields. The increased proportion of thin cracks on the flanks, coupled with the increased seismic velocity, indicates a decrease in permeability caused by progressive clogging of thick cracks due to mineral precipitation likely in the downflow zone of hydrothermal circulation.

     
    more » « less
  5. This paper presents the first detailed geologic map of in situ lower ocean crust; the product of six surveys of Atlantis Bank on the SW Indian Ridge. This combined with major and trace element compositions of primary magmatic phases in 99 seafloor gabbros shows there are both significant vertical and ridge-parallel variations in crustal composition and thickness, but a continuity of the basic stratigraphy parallel to spreading. This stratigraphy is not that of magmatic sedimentation in a large crustal magma chamber. Instead, it is the product of dynamic accretion where the lower crust formed by episodic intrusion, large-scale upward migration of interstitial melt due to crystal mush compaction, and continuous tectonic extension accompanied by hyper- and sub-solidus, crystal-plastic deformation. Five crossings of the gabbro-peridotite contact along the transform wall show that massive mantle peridotite is intruded by cumulate residues of moderately to highly evolved magmas, few of which could be even close to equilibrium with a primary mantle magma. This contact then does not represent the crust-mantle boundary as envisaged in the ophiolite analog for ocean crust. The residues of the magmas parental to the shallow crust must also lie beneath the center of the complex. This, and the nearly complete absence of dunites in peridotites from the transform wall, shows that melt transport through the shallow lithosphere was largely restricted to the central region of the paleo-ridge segment. There is almost no evidence for a melt lens or high-level storage of primitive melt in the upper 1500 m of Atlantis Bank. Thus, the composition of associated mid-ocean ridge basalt appears largely controlled by fractional crystallization of primitive cumulates at depth, near or at the base of the crust, modified somewhat by melt-rock reaction during transport through the overlying cumulate pile to the seafloor. Inliers of the dike-gabbro transition show that the uppermost gabbros crystallized at depth and were then emplaced upward, as they cooled, into the zone of diking. ODP and IODP drilling along the center of the gabbro massif also found few primitive gabbros that could have been in equilibrium with the original overlying lavas. Evidence of large-scale upward, permeable transport of interstitial melt through the gabbros is ubiquitous. Thus, post-cumulus processes, including extensive reaction, dissolution, and re-precipitation within the cumulate pile have obscured nearly all evidence of earlier primitive origins. We suggest that many of the gabbros may have started as primitive cumulates but were hybridized and transformed by later, migrating melts to evolved compositions, even as they ascended to higher levels, while new primitive cumulates were emplaced near the base of the crust. Mass balance for a likely parental melt intruded from the mantle to form the crust, however, requires that such primitive cumulates must exist at depth beneath Atlantis Bank at the center of the magmatic complex. The Atlantis Bank Gabbro Massif accreted by direct magma intrusion into the lower crust, followed by upward diapiric flow, first as a crystal mush, then by solid-state, crystal-plastic deformation, and finally by detachment faulting to the sea floor. The strongly asymmetric spreading to the south, parallel to the transform, was due to fault capture, with the bounding faults on the northern rift valley wall cut off by the detachment fault, which extended across the zone of intrusion causing rapid migration of the plate boundary to the north. 
    more » « less