skip to main content


Title: Direct measurements reveal instabilities and turbulence within large amplitude internal solitary waves beneath the ocean
Abstract Internal solitary waves are ubiquitous in coastal regions and marginal seas of the world’s oceans. As the waves shoal shoreward, they lose the energy obtained from ocean tides through globally significant turbulent mixing and dissipation and consequently pump nutrient-rich water to nourish coastal ecosystem. Here we present fine-scale, direct measurements of shoaling internal solitary waves in the South China Sea, which allow for an examination of the physical processes triggering the intensive turbulent mixing in their interior. These are convective breaking in the wave core and the collapse of Kelvin–Helmholtz billows in the wave rear and lower periphery of the core, often occurring simultaneously. The former takes place when the particle velocity exceeds the wave’s propagating velocity. The latter is caused by the instability induced by the strong velocity shear overcoming the stratification. The instabilities generate turbulence levels four orders of magnitude larger than that in the open ocean.  more » « less
Award ID(s):
1753317
NSF-PAR ID:
10213723
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large-amplitude internal solitary waves were recently observed in a coastal plain estuary and were hypothesized to evolve from an internal lee wave generated at the channel–shoal interface. To test this mechanism, a 3D nonhydrostatic model with nested domains and adaptive grids was used to investigate the generation of the internal solitary waves and their subsequent nonlinear evolution. A complex sequence of wave propagation and transformation was documented and interpreted using the nonlinear wave theory based on the Korteweg–de Vries equation. During the ebb tide a mode-2 internal lee wave is generated by the interaction between lateral flows and channel–shoal topography. This mode-2 lee wave subsequently propagates onto the shallow shoal and transforms into a mode-1 wave of elevation as strong mixing on the flood tide erases stratification in the bottom boundary layer and the lower branch of the mode-2 wave. The mode-1 wave of elevation evolves into an internal solitary wave due to nonlinear steepening and spatial changes in the wave phase speed. As the solitary wave of elevation continues to propagate over the shoaling bottom, the leading edge moves ahead as a rarefaction wave while the trailing edge steepens and disintegrates into a train of rank-ordered internal solitary waves, due to the combined effects of shoaling and dispersion. Strong turbulence in the bottom boundary layer dissipates wave energy and causes the eventual destruction of the solitary waves. In the meantime, the internal solitary waves can generate elevated shear and dissipation rate in local regions.

    Significance Statement

    In the coastal ocean nonlinear internal solitary waves are widely recognized to play an important role in generating turbulent mixing, modulating short-term variability of nearshore ecosystem, and transporting sediment and biochemical materials. However, their effects on shallow and stratified estuaries are poorly known and have been rarely studied. The nonhydrostatic model simulations presented in this paper shed new light into the generation, propagation, and transformation of the internal solitary waves in a coastal plain estuary.

     
    more » « less
  2. Abstract Space- and time-continuous seafloor temperature observations captured the three-dimensional structure of shoaling nonlinear internal waves (NLIWs) off of La Jolla, California. NLIWs were tracked for hundreds of meters in the cross- and along-shelf directions using a fiber optic Distributed Temperature Sensing (DTS) seafloor array, complemented by an ocean-wave-powered vertical profiling mooring. Trains of propagating cold-water pulses were observed on the DTS array inshore of the location of polarity transition predicted by weakly nonlinear internal wave theory. The subsequent evolution of the temperature signatures during shoaling was consistent with that of strongly nonlinear internal waves with a large Froude number, highlighting their potential to impact property exchange. Unexpectedly, individual NLIWs were trailed by a coherent, small-scale pattern of seabed temperature variability as they moved across the mid- and inner shelf. A kinematic model was used to demonstrate that the observed patterns were consistent with a transverse instability with an along-crest wavelength of ∼10 m – a distance comparable to the cross-crest width of the wave-core – and with an inferred amplitude of several meters. The signature of this instability is consistent with the span-wise vortical circulations generated in three-dimensional direct numerical simulations of shoaling and breaking nonlinear internal waves. The coupling between the small-scale transverse wave-wake and turbulent wave-core may have an important impact on mass, momentum, and tracer redistribution in the coastal ocean. 
    more » « less
  3. Abstract Studies of internal wave-driven mixing in the coastal ocean have been mainly focused on internal tides, while wind-driven near-inertial waves (NIWs) have received less attention in this regard. This study demonstrates a scenario of NIW-driven mixing over the Texas-Louisiana shelf. Supported by a high-resolution simulation over the shelf, the NIWs driven by land-sea breeze radiate downward at a sharp front and enhance the mixing in the bottom boundary layer where the NIWs are focused due to slantwise critical reflection. The criterion for slantwise critical reflection of NIWs is (where ω is the wave frequency, S bot is the bottom slope, and S p is the isopycnal slope) under the assumption that the mean flow is in a thermal wind balance and only varies in the slope-normal direction. The mechanism driving the enhanced mixing is explored in an idealized simulation. During slantwise critical reflection, NIWs are amplified with enhanced shear and periodically destratify a bottom boundary layer via differential buoyancy advection, leading to periodically enhanced mixing. Turbulent transport of tracers is also enhanced during slantwise critical reflection of NIWs, which has implications for bottom hypoxia over the Texas-Louisiana shelf. 
    more » « less
  4. null (Ed.)
    Abstract The origins of an observed weakly sheared nonturbulent (laminar) layer (WSL), and a strongly sheared turbulent layer above the Equatorial Undercurrent core (UCL) in the eastern equatorial Pacific are studied, based mainly on the data from the Tropical Atmosphere and Ocean mooring array. Multiple-time-scale (from 3 to 25 days) equatorial waves were manifested primarily as zonal velocity oscillations with the maximum amplitudes (from 10 to 30 cm s −1 ) occurring at different depths (from the surface to 85-m depths) above the seasonal thermocline. The subsurface-intensified waves led to vertically out-of-phase shear variations in the upper thermocline via destructive interference with the seasonal zonal flow, opposing the tendency for shear instability. These waves were also associated with depth-dependent, multiple-vertical-scale stratification variations, with phase lags of π /2 or π , further altering stability of the zonal current system to vertical shear. The WSL and UCL were consequently formed by coupling of multiple equatorial waves with differing phases, particularly of the previously identified equatorial mode and subsurface mode tropical instability waves (with central period of 17 and 20 days, respectively, in this study), and subsurface-intensified waves with central periods of 6, 5, and 12 days and velocity maxima at 45-, 87-, and 40-m depths, respectively. In addition, a wave-like feature with periods of 50–90 days enhanced the shear throughout the entire UCL. WSLs and UCLs seem to emerge without a preference for particular tropical instability wave phases. The generation mechanisms of the equatorial waves and their joint impacts on thermocline mixing remain to be elucidated. 
    more » « less
  5. Abstract The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise. 
    more » « less