skip to main content


Title: Source parameter analysis using distributed acoustic sensing – an example with the PoroTomo array
SUMMARY

In this study, I demonstrate that distributed acoustic sensing (DAS) raw strain rate data can directly be used to estimate spectral source parameters through an Empirical Green's Function (EGF) deconvolution analysis. Previously, DAS had been widely used in passive seismology to image the subsurface and analyze ground motion variations by converting strain or strain rate to particle velocity or acceleration prior to analysis. In this study, spectral analysis is applied to the PoroTomo joint DAS and seismic Nodal array in the Brady Hot Springs geothermal field to obtain source parameters for two M4 earthquakes via EGF analysis, where nearly collocated smaller events are used as an EGF to remove path and site effects. The EGF workflow is applied to raw DAS strain rate data without conversion to particle velocities and raw Nodal seismic data. The DAS and Nodal results are very consistent with similar features of spectral ratios, corner frequencies and moment ratios for the same event pairs. The uncertainty due to stacked spectral measurement is much lower on the DAS array, suggesting better stability of spectral shape measurement, possibly due to the much denser spatial sampling. The uncertainty due to model fitting is similar between DAS and Nodal arrays with slightly lower uncertainty on the DAS array. These observations demonstrate potential for directly using the strain rate measurements from DAS arrays for earthquake source characterizations.

 
more » « less
Award ID(s):
2033376
NSF-PAR ID:
10398602
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 2208-2214
Size(s):
["p. 2208-2214"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Earthquake focal mechanisms provide critical in-situ insights about the subsurface faulting geometry and stress state. For frequent small earthquakes (magnitude< 3.5), their focal mechanisms are routinely determined using first-arrival polarities picked on the vertical component of seismometers. Nevertheless, their quality is usually limited by the azimuthal coverage of the local seismic network. The emerging distributed acoustic sensing (DAS) technology, which can convert pre-existing telecommunication cables into arrays of strain/strain-rate meters, can potentially fill the azimuthal gap and enhance constraints on the nodal plane orientation through its long sensing range and dense spatial sampling. However, determining first-arrival polarities on DAS is challenging due to its single-component sensing and low signal-to-noise ratio for direct body waves. Here, we present a data-driven method that measures P-wave polarities on a DAS array based on cross-correlations between earthquake pairs. We validate the inferred polarities using the regional network catalog on two DAS arrays, deployed in California and each comprising ~ 5000 channels. We demonstrate that a joint focal mechanism inversion combining conventional and DAS polarity picks improves the accuracy and reduces the uncertainty in the focal plane orientation. Our results highlight the significant potential of integrating DAS with conventional networks for investigating high-resolution earthquake source mechanisms.

     
    more » « less
  2. null (Ed.)
    SUMMARY Horizontal slowness vector measurements using array techniques have been used to analyse many Earth phenomena from lower mantle heterogeneity to meteorological event location. While providing observations essential for studying much of the Earth, slowness vector analysis is limited by the necessary and subjective visual inspection of observations. Furthermore, it is challenging to determine the uncertainties caused by limitations of array processing such as array geometry, local structure, noise and their effect on slowness vector measurements. To address these issues, we present a method to automatically identify seismic arrivals and measure their slowness vector properties with uncertainty bounds. We do this by bootstrap sampling waveforms, therefore also creating random sub arrays, then use linear beamforming to measure the coherent power at a range of slowness vectors. For each bootstrap sample, we take the top N peaks from each power distribution as the slowness vectors of possible arrivals. The slowness vectors of all bootstrap samples are gathered and the clustering algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is used to identify arrivals as clusters of slowness vectors. The mean of slowness vectors in each cluster gives the slowness vector measurement for that arrival and the distribution of slowness vectors in each cluster gives the uncertainty estimate. We tuned the parameters of DBSCAN using a data set of 2489 SKS and SKKS observations at a range of frequency bands from 0.1 to 1 Hz. We then present examples at higher frequencies (0.5–2.0 Hz) than the tuning data set, identifying PKP precursors, and lower frequency by identifying multipathing in surface waves (0.04–0.06 Hz). While we use a linear beamforming process, this method can be implemented with any beamforming process such as cross correlation beamforming or phase weighted stacking. This method allows for much larger data sets to be analysed without visual inspection of data. Phenomena such as multipathing, reflections or scattering can be identified automatically in body or surface waves and their properties analysed with uncertainties. 
    more » « less
  3. Abstract

    We present a real-data test for offshore earthquake early warning (EEW) with distributed acoustic sensing (DAS) by transforming submarine fiber-optic cable into a dense seismic array. First, we constrain earthquake locations using the arrival-time information recorded by the DAS array. Second, with site effects along the cable calibrated using an independent earthquake, we estimate earthquake magnitudes directly from strain rate amplitudes by applying a scaling relation transferred from onshore DAS arrays. Our results indicate that using this single 50 km offshore DAS array can offer ∼3 s improvement in the alert time of EEW compared to onshore seismic stations. Furthermore, we simulate and demonstrate that multiple DAS arrays extending toward the trench placed along the coast can uniformly improve alert times along a subduction zone by more than 5 s.

     
    more » « less
  4. SUMMARY Distributed acoustic sensing (DAS) networks promise to revolutionize observational seismology by providing cost-effective, highly dense spatial sampling of the seismic wavefield, especially by utilizing pre-deployed telecomm fibre in urban settings for which dense seismic network deployments are difficult to construct. However, each DAS channel is sensitive only to one projection of the horizontal strain tensor and therefore gives an incomplete picture of the horizontal seismic wavefield, limiting our ability to make a holistic analysis of instrument response. This analysis has therefore been largely restricted to pointwise comparisons where a fortuitious coincidence of reference three-component seismometers and colocated DAS cable allows. We evaluate DAS instrument response by comparing DAS measurements from the PoroTomo experiment with strain-rate wavefield reconstructed from the nodal seismic array deployed in the same experiment, allowing us to treat the entire DAS array in a systematic fashion irrespective of cable geometry relative to the location of nodes. We found that, while the phase differences are in general small, the amplitude differences between predicted and observed DAS strain rates average a factor of 2 across the array and correlate with near-surface geology, suggesting that careful assessment of DAS deployments is essential for applications that require reliable assessments of amplitude. We further discuss strategies for empirical gain corrections and optimal placement of point sensor deployments to generate the best combined sensitivity with an already deployed DAS cable, from a wavefield reconstruction perspective. 
    more » « less
  5. There is a growing need to characterize the engineering material properties of the shallow subsurface in three dimensions for advanced engineering analyses. However, imaging the near-surface in three dimensions at spatial resolutions required for such purposes remains in its infancy and requires further study before it can be adopted into practice. To enable and accelerate research in this area, we present a large subsurface imaging data set acquired using a dense network of three-component (3C) nodal stations acquired in 2019 at the Garner Valley Downhole Array (GVDA) site. Acquisition of this data set involved the deployment of 196 stations positioned on a 14 × 14 grid with a 5 m spacing. The array was used to acquire active-source data generated by a vibroseis truck and an instrumented sledgehammer, and passive-wavefield data containing ambient noise. The active-source acquisition included 66 vibroseis and 209 instrumented sledgehammer source locations. Multiple source impacts were recorded at each source location to enable stacking of the recorded signals. The active-source recordings are provided in terms of both raw, uncorrected units of counts and corrected engineering units of meters per second. For each source impact, the force output from the vibroseis or instrumented sledgehammer was recorded and is provided in both raw counts and engineering units of kilonewtons. The passive-wavefield data include 28 h of ambient noise recorded over two nighttime deployments. The data set is shown to be useful for active-source and passive-wavefield three-dimensional imaging and other subsurface characterization techniques, which include horizontal-to-vertical spectral ratios (HVSRs), multichannel analysis of surface waves (MASW), and microtremor array measurements (MAM).

     
    more » « less